Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso embargado |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/37887 |
Resumo: | Uma cena quando capturada por dispositivos pode apresentar diferenças significativas entre aquilo que é observado diretamente pelo olho humano e sua representação na forma de imagem. Isto se deve à capacidade que os seres humanos têm de perceber certos aspectos da imagem, como cor e detalhes em regiões escuras independentemente da iluminação. A implementação de tais habilidades em sistemas computacionais se mostra benéfica em várias aplicações gráficas e de visão computacional, tais como as que envolvem classificação, segmentação semântica e renderização de cenas. Neste trabalho, são abordados dois tipos de aprimoramento de imagem. O primeiro visa corrigir as cores dos objetos de uma cena, de maneira que as mesmas possam ser identificadas corretamente independentemente da cor do iluminante utilizado para captura, propriedade conhecida como constância de cor. Já o segundo tipo de aprimoramento é voltado para casos onde a captura da imagem é feita sob condições de baixa luminosidade. Para ambos os problemas, percebeu-se que o ponto central é a influência da iluminação que pode gerar efeitos não desejáveis sobre a cena. A partir dessa observação, são apresentados dois métodos baseados em redes neurais convolucionais que, ao receberem uma imagem, estimam o iluminante sendo este utilizado para correção da mesma. Experimentos revelam que as estratégias propostas são capazes de proporcionar resultados compatíveis e, em certos casos, superiores aos algoritmos do estado da arte. |
| id |
UFPE_bc0e43a383ee2b6c8a957ed5ab25f9ee |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/37887 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem ProfundaInteligência computacionalAprimoramento de imagensUma cena quando capturada por dispositivos pode apresentar diferenças significativas entre aquilo que é observado diretamente pelo olho humano e sua representação na forma de imagem. Isto se deve à capacidade que os seres humanos têm de perceber certos aspectos da imagem, como cor e detalhes em regiões escuras independentemente da iluminação. A implementação de tais habilidades em sistemas computacionais se mostra benéfica em várias aplicações gráficas e de visão computacional, tais como as que envolvem classificação, segmentação semântica e renderização de cenas. Neste trabalho, são abordados dois tipos de aprimoramento de imagem. O primeiro visa corrigir as cores dos objetos de uma cena, de maneira que as mesmas possam ser identificadas corretamente independentemente da cor do iluminante utilizado para captura, propriedade conhecida como constância de cor. Já o segundo tipo de aprimoramento é voltado para casos onde a captura da imagem é feita sob condições de baixa luminosidade. Para ambos os problemas, percebeu-se que o ponto central é a influência da iluminação que pode gerar efeitos não desejáveis sobre a cena. A partir dessa observação, são apresentados dois métodos baseados em redes neurais convolucionais que, ao receberem uma imagem, estimam o iluminante sendo este utilizado para correção da mesma. Experimentos revelam que as estratégias propostas são capazes de proporcionar resultados compatíveis e, em certos casos, superiores aos algoritmos do estado da arte.CNPqA scene captured by devices can present significant differences between objects that are directly visible to the human eye and their representation as an image. This ability allows humans to perceive certain aspects of the image, such as color and details in dark regions, somewhat independently of lighting. The implementation of such skills in computer systems shows benefits in various graphics and computer vision applications, such as classification tasks, semantic segmentation, and scene rendering. In this work, two types of image enhancement are introduced. The first method for image enhancement aims to correct the colors of the objects in a scene so that they can be correctly identified regardless of the color of the light source used to capture the image, a property known as color constancy. The second enhancement method focuses on cases where the image is captured under low-light conditions. For both problems, the central point is the influence of lighting that can generate undesirable effects on the scene. For this reason, two methods are presented based on convolutional neural networks that receive an image and estimate the illuminant that is used to correct the scene. Experimental results reveal that the proposed methods achieve compatible results and, in some cases, demonstrate superior performance to the state-of-the-art methods.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoMELLO, Carlos Alexandre Barros dehttp://lattes.cnpq.br/8243824739514947http://lattes.cnpq.br/2248591013863307COSTA, Daniela de Sousa2020-09-09T20:16:29Z2020-09-09T20:16:29Z2020-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCOSTA, Daniela de Sousa. Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/37887porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-09-10T05:10:44Zoai:repositorio.ufpe.br:123456789/37887Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-09-10T05:10:44Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda |
| title |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda |
| spellingShingle |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda COSTA, Daniela de Sousa Inteligência computacional Aprimoramento de imagens |
| title_short |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda |
| title_full |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda |
| title_fullStr |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda |
| title_full_unstemmed |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda |
| title_sort |
Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda |
| author |
COSTA, Daniela de Sousa |
| author_facet |
COSTA, Daniela de Sousa |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
MELLO, Carlos Alexandre Barros de http://lattes.cnpq.br/8243824739514947 http://lattes.cnpq.br/2248591013863307 |
| dc.contributor.author.fl_str_mv |
COSTA, Daniela de Sousa |
| dc.subject.por.fl_str_mv |
Inteligência computacional Aprimoramento de imagens |
| topic |
Inteligência computacional Aprimoramento de imagens |
| description |
Uma cena quando capturada por dispositivos pode apresentar diferenças significativas entre aquilo que é observado diretamente pelo olho humano e sua representação na forma de imagem. Isto se deve à capacidade que os seres humanos têm de perceber certos aspectos da imagem, como cor e detalhes em regiões escuras independentemente da iluminação. A implementação de tais habilidades em sistemas computacionais se mostra benéfica em várias aplicações gráficas e de visão computacional, tais como as que envolvem classificação, segmentação semântica e renderização de cenas. Neste trabalho, são abordados dois tipos de aprimoramento de imagem. O primeiro visa corrigir as cores dos objetos de uma cena, de maneira que as mesmas possam ser identificadas corretamente independentemente da cor do iluminante utilizado para captura, propriedade conhecida como constância de cor. Já o segundo tipo de aprimoramento é voltado para casos onde a captura da imagem é feita sob condições de baixa luminosidade. Para ambos os problemas, percebeu-se que o ponto central é a influência da iluminação que pode gerar efeitos não desejáveis sobre a cena. A partir dessa observação, são apresentados dois métodos baseados em redes neurais convolucionais que, ao receberem uma imagem, estimam o iluminante sendo este utilizado para correção da mesma. Experimentos revelam que as estratégias propostas são capazes de proporcionar resultados compatíveis e, em certos casos, superiores aos algoritmos do estado da arte. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-09-09T20:16:29Z 2020-09-09T20:16:29Z 2020-02-27 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
COSTA, Daniela de Sousa. Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020. https://repositorio.ufpe.br/handle/123456789/37887 |
| identifier_str_mv |
COSTA, Daniela de Sousa. Aprimoramento de imagens baseado em estimativa de iluminante e técnicas de Aprendizagem Profunda. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020. |
| url |
https://repositorio.ufpe.br/handle/123456789/37887 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042085292965888 |