Exportação concluída — 

Detecção e diagnóstico de falhas na performance de aerogeradores

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: PEDROSA, Guilherme Tenório Maciel da Cunha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Mecanica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/22218
Resumo: Aerogeradores modernos são capazes de coletar e armazenar uma enorme quantidade de informações graças ao sistema de controle supervisório e aquisição de dados (SCADA) neles comumente embarcados. Esses dados são, porém, muitas vezes negligenciados em lugar de empregados em prol da otimização das tarefas de operação, manutenção e maximização de performance das centrais eólicas. Com vistas a explorar ao máximo as informações provenientes do sistema SCADA, este trabalho estabelece um sistema de detecção e diagnóstico de falhas relativas à potência ativa do aerogerador. Desvios de potência são detectados por meio da comparação entre dados observacionais da potência ativa e saídas de modelos uni e multivariáveis. Caso detectados, os desvios na potência são submetidos a um método de diagnóstico inovador baseado na informação mútua entre variáveis do SCADA e os próprios desvios. Tal método tem como objetivo indicar as variáveis do SCADA que melhor explicam os desvios de potência ativa. O sistema de detecção e diagnóstico de falhas aqui proposto foi aplicado a dois estudos de caso utilizando-se de dados observacionais de aerogeradores reais de uma dada central eólica, cedidos em regime de confidencialidade pela empresa proprietária da central. A validação dos modelos se dá através da comparação entre seus resultados e os metadados do livro de ocorrências da central eólica. É observado que o método de detecção de falhas foi capaz de identificar até 100% dos dados com falha para um dos casos apresentados, apesar de apresentar dificuldades na detecção de pequenas variações de potência no segundo caso, detectando apenas 47,18% dos dados com falha. Contudo, o novo método de diagnóstico se mostrou eficaz em apontar as variáveis com maior possibilidade de explicar as variações da potência, mesmo para falhas similares. As variáveis que se destacaram coincidiram com a causa raiz dos problemas apresentados segundo o livro de ocorrências da central eólica.
id UFPE_bccb91cb67632d39cab5a902ddb6ce14
oai_identifier_str oai:repositorio.ufpe.br:123456789/22218
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Detecção e diagnóstico de falhas na performance de aerogeradoresEnergiaeólicaMonitoramentodeperformanceAerogeradoresAerogeradores modernos são capazes de coletar e armazenar uma enorme quantidade de informações graças ao sistema de controle supervisório e aquisição de dados (SCADA) neles comumente embarcados. Esses dados são, porém, muitas vezes negligenciados em lugar de empregados em prol da otimização das tarefas de operação, manutenção e maximização de performance das centrais eólicas. Com vistas a explorar ao máximo as informações provenientes do sistema SCADA, este trabalho estabelece um sistema de detecção e diagnóstico de falhas relativas à potência ativa do aerogerador. Desvios de potência são detectados por meio da comparação entre dados observacionais da potência ativa e saídas de modelos uni e multivariáveis. Caso detectados, os desvios na potência são submetidos a um método de diagnóstico inovador baseado na informação mútua entre variáveis do SCADA e os próprios desvios. Tal método tem como objetivo indicar as variáveis do SCADA que melhor explicam os desvios de potência ativa. O sistema de detecção e diagnóstico de falhas aqui proposto foi aplicado a dois estudos de caso utilizando-se de dados observacionais de aerogeradores reais de uma dada central eólica, cedidos em regime de confidencialidade pela empresa proprietária da central. A validação dos modelos se dá através da comparação entre seus resultados e os metadados do livro de ocorrências da central eólica. É observado que o método de detecção de falhas foi capaz de identificar até 100% dos dados com falha para um dos casos apresentados, apesar de apresentar dificuldades na detecção de pequenas variações de potência no segundo caso, detectando apenas 47,18% dos dados com falha. Contudo, o novo método de diagnóstico se mostrou eficaz em apontar as variáveis com maior possibilidade de explicar as variações da potência, mesmo para falhas similares. As variáveis que se destacaram coincidiram com a causa raiz dos problemas apresentados segundo o livro de ocorrências da central eólica.Wind turbines are capable of collecting and storing a great amount of information due to the supervisory control and data acquisition systems (SCADA) usually boarded in modern machines. These data, however, are neglected in most cases rather than employed to optimize the mainenance and operation tasks and maximize the performance of wind farms. Aiming to exploit SCADA data information, this work establishes a wind turbine performance fault detection and diagnosis system, with respect to the wind turbine generator active power. Power deviation is detected through comparison between observational active power data and the output of uni and multivariable models. If detected, power deviation is subjected to an innovative fault diagnosis method based on the mutual information between itself and the SCADA data. This method aims to identify which SCADA variables best explain active power deviations. The fault detection and diagnosis system hereby proposed are applied to two case studies based on real wind turbine generator data of a specific wind farm, given under confidential clauses. It is observed that the failure detection method was capable of detecting 100% of the data with failure for one of the study cases, even though it presented difficulties to detect the failure for smaller residual variations, resulting in a 47,18% detection rate. Nonetheless, the new diagnosis method showed itself efficient in pointing SCADA variables prone to explain active power deviation, even for similar failure modes. The SCADA variables indicated the failure root cause according to the wind farm metadata logbook.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia MecanicaROSAS, Pedro André CarvalhoCOSTA, Alexandre Carlos Araújo dahttp://lattes.cnpq.br/7817919916395333http://lattes.cnpq.br/5539599537097451PEDROSA, Guilherme Tenório Maciel da Cunha2017-10-31T13:13:06Z2017-10-31T13:13:06Z2016-09-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/22218porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-26T01:27:01Zoai:repositorio.ufpe.br:123456789/22218Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T01:27:01Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Detecção e diagnóstico de falhas na performance de aerogeradores
title Detecção e diagnóstico de falhas na performance de aerogeradores
spellingShingle Detecção e diagnóstico de falhas na performance de aerogeradores
PEDROSA, Guilherme Tenório Maciel da Cunha
Energiaeólica
Monitoramentodeperformance
Aerogeradores
title_short Detecção e diagnóstico de falhas na performance de aerogeradores
title_full Detecção e diagnóstico de falhas na performance de aerogeradores
title_fullStr Detecção e diagnóstico de falhas na performance de aerogeradores
title_full_unstemmed Detecção e diagnóstico de falhas na performance de aerogeradores
title_sort Detecção e diagnóstico de falhas na performance de aerogeradores
author PEDROSA, Guilherme Tenório Maciel da Cunha
author_facet PEDROSA, Guilherme Tenório Maciel da Cunha
author_role author
dc.contributor.none.fl_str_mv ROSAS, Pedro André Carvalho
COSTA, Alexandre Carlos Araújo da
http://lattes.cnpq.br/7817919916395333
http://lattes.cnpq.br/5539599537097451
dc.contributor.author.fl_str_mv PEDROSA, Guilherme Tenório Maciel da Cunha
dc.subject.por.fl_str_mv Energiaeólica
Monitoramentodeperformance
Aerogeradores
topic Energiaeólica
Monitoramentodeperformance
Aerogeradores
description Aerogeradores modernos são capazes de coletar e armazenar uma enorme quantidade de informações graças ao sistema de controle supervisório e aquisição de dados (SCADA) neles comumente embarcados. Esses dados são, porém, muitas vezes negligenciados em lugar de empregados em prol da otimização das tarefas de operação, manutenção e maximização de performance das centrais eólicas. Com vistas a explorar ao máximo as informações provenientes do sistema SCADA, este trabalho estabelece um sistema de detecção e diagnóstico de falhas relativas à potência ativa do aerogerador. Desvios de potência são detectados por meio da comparação entre dados observacionais da potência ativa e saídas de modelos uni e multivariáveis. Caso detectados, os desvios na potência são submetidos a um método de diagnóstico inovador baseado na informação mútua entre variáveis do SCADA e os próprios desvios. Tal método tem como objetivo indicar as variáveis do SCADA que melhor explicam os desvios de potência ativa. O sistema de detecção e diagnóstico de falhas aqui proposto foi aplicado a dois estudos de caso utilizando-se de dados observacionais de aerogeradores reais de uma dada central eólica, cedidos em regime de confidencialidade pela empresa proprietária da central. A validação dos modelos se dá através da comparação entre seus resultados e os metadados do livro de ocorrências da central eólica. É observado que o método de detecção de falhas foi capaz de identificar até 100% dos dados com falha para um dos casos apresentados, apesar de apresentar dificuldades na detecção de pequenas variações de potência no segundo caso, detectando apenas 47,18% dos dados com falha. Contudo, o novo método de diagnóstico se mostrou eficaz em apontar as variáveis com maior possibilidade de explicar as variações da potência, mesmo para falhas similares. As variáveis que se destacaram coincidiram com a causa raiz dos problemas apresentados segundo o livro de ocorrências da central eólica.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-05
2017-10-31T13:13:06Z
2017-10-31T13:13:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/22218
url https://repositorio.ufpe.br/handle/123456789/22218
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Mecanica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Mecanica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041879990173696