Uma análise de otimização de redes neurais MLP por exames de partículas

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: CARVALHO, Marcio Ribeiro de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
PSO
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2672
Resumo: Este trabalho propõe uma metodologia para a otimização global de redes neurais MLP. O objetivo é a otimização simultânea de arquiteturas e pesos sinápticos de redes MLP, na tentativa de proporcionar um bom desempenho de classificação para qualquer conjunto de dados. A otimização simultânea de arquiteturas e pesos de redes neurais é uma abordagem interessante para a obtenção de redes eficientes com maior poder de generalização, pois cria um compromisso entre baixa complexidade estrutural do modelo e baixos índices de erro de treinamento. Tal aplicação já foi bastante investigada com a utilização de métodos de busca metaheurística tais como algoritmos genéticos, recozimento simulado, busca tabu e combinações dos mesmos. Outra técnica de busca meta-heurística menos investigada neste contexto é a otimização por enxame de partículas (PSO) que vem recebendo cada vez mais atenção da comunidade científica devido aos bons resultados obtidos ao lidar com problemas de otimização numérica contínua. A metodologia desenvolvida neste trabalho consiste na aplicação de dois algoritmos PSOs, um para a otimização de arquiteturas e outro para o ajuste dos pesos sinápticos de cada arquitetura gerada pelo primeiro PSO. Estes dois processos são intercalados por um número específico de iterações. Este trabalho apresenta resultados da aplicação da metodologia proposta em três conhecidas bases de dados de problemas de classificação de padrões de domínio médico. Nos problemas mais difíceis de classificar, a metodologia apresentada obteve resultados satisfatórios e gerou redes com baixo erro de generalização e baixa complexidade. Tais resultados são relevantes para mostrar que a técnica meta-heurística de otimização por enxames de partículas é uma opção efetiva para o ajuste de pesos e arquiteturas de redes neurais MLP
id UFPE_bd068d96c8d9ddb6f1d7e80240585ae6
oai_identifier_str oai:repositorio.ufpe.br:123456789/2672
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Uma análise de otimização de redes neurais MLP por exames de partículasPSOOtimização de redes neurais MLPGeneralizaçãoTécnicas de busca globalEste trabalho propõe uma metodologia para a otimização global de redes neurais MLP. O objetivo é a otimização simultânea de arquiteturas e pesos sinápticos de redes MLP, na tentativa de proporcionar um bom desempenho de classificação para qualquer conjunto de dados. A otimização simultânea de arquiteturas e pesos de redes neurais é uma abordagem interessante para a obtenção de redes eficientes com maior poder de generalização, pois cria um compromisso entre baixa complexidade estrutural do modelo e baixos índices de erro de treinamento. Tal aplicação já foi bastante investigada com a utilização de métodos de busca metaheurística tais como algoritmos genéticos, recozimento simulado, busca tabu e combinações dos mesmos. Outra técnica de busca meta-heurística menos investigada neste contexto é a otimização por enxame de partículas (PSO) que vem recebendo cada vez mais atenção da comunidade científica devido aos bons resultados obtidos ao lidar com problemas de otimização numérica contínua. A metodologia desenvolvida neste trabalho consiste na aplicação de dois algoritmos PSOs, um para a otimização de arquiteturas e outro para o ajuste dos pesos sinápticos de cada arquitetura gerada pelo primeiro PSO. Estes dois processos são intercalados por um número específico de iterações. Este trabalho apresenta resultados da aplicação da metodologia proposta em três conhecidas bases de dados de problemas de classificação de padrões de domínio médico. Nos problemas mais difíceis de classificar, a metodologia apresentada obteve resultados satisfatórios e gerou redes com baixo erro de generalização e baixa complexidade. Tais resultados são relevantes para mostrar que a técnica meta-heurística de otimização por enxames de partículas é uma opção efetiva para o ajuste de pesos e arquiteturas de redes neurais MLPUniversidade Federal de PernambucoLUDERMIR, Teresa BernardaCARVALHO, Marcio Ribeiro de2014-06-12T16:00:06Z2014-06-12T16:00:06Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfRibeiro de Carvalho, Marcio; Bernarda Ludermir, Teresa. Uma análise de otimização de redes neurais MLP por exames de partículas. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007.https://repositorio.ufpe.br/handle/123456789/2672porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T05:57:20Zoai:repositorio.ufpe.br:123456789/2672Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:57:20Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Uma análise de otimização de redes neurais MLP por exames de partículas
title Uma análise de otimização de redes neurais MLP por exames de partículas
spellingShingle Uma análise de otimização de redes neurais MLP por exames de partículas
CARVALHO, Marcio Ribeiro de
PSO
Otimização de redes neurais MLP
Generalização
Técnicas de busca global
title_short Uma análise de otimização de redes neurais MLP por exames de partículas
title_full Uma análise de otimização de redes neurais MLP por exames de partículas
title_fullStr Uma análise de otimização de redes neurais MLP por exames de partículas
title_full_unstemmed Uma análise de otimização de redes neurais MLP por exames de partículas
title_sort Uma análise de otimização de redes neurais MLP por exames de partículas
author CARVALHO, Marcio Ribeiro de
author_facet CARVALHO, Marcio Ribeiro de
author_role author
dc.contributor.none.fl_str_mv LUDERMIR, Teresa Bernarda
dc.contributor.author.fl_str_mv CARVALHO, Marcio Ribeiro de
dc.subject.por.fl_str_mv PSO
Otimização de redes neurais MLP
Generalização
Técnicas de busca global
topic PSO
Otimização de redes neurais MLP
Generalização
Técnicas de busca global
description Este trabalho propõe uma metodologia para a otimização global de redes neurais MLP. O objetivo é a otimização simultânea de arquiteturas e pesos sinápticos de redes MLP, na tentativa de proporcionar um bom desempenho de classificação para qualquer conjunto de dados. A otimização simultânea de arquiteturas e pesos de redes neurais é uma abordagem interessante para a obtenção de redes eficientes com maior poder de generalização, pois cria um compromisso entre baixa complexidade estrutural do modelo e baixos índices de erro de treinamento. Tal aplicação já foi bastante investigada com a utilização de métodos de busca metaheurística tais como algoritmos genéticos, recozimento simulado, busca tabu e combinações dos mesmos. Outra técnica de busca meta-heurística menos investigada neste contexto é a otimização por enxame de partículas (PSO) que vem recebendo cada vez mais atenção da comunidade científica devido aos bons resultados obtidos ao lidar com problemas de otimização numérica contínua. A metodologia desenvolvida neste trabalho consiste na aplicação de dois algoritmos PSOs, um para a otimização de arquiteturas e outro para o ajuste dos pesos sinápticos de cada arquitetura gerada pelo primeiro PSO. Estes dois processos são intercalados por um número específico de iterações. Este trabalho apresenta resultados da aplicação da metodologia proposta em três conhecidas bases de dados de problemas de classificação de padrões de domínio médico. Nos problemas mais difíceis de classificar, a metodologia apresentada obteve resultados satisfatórios e gerou redes com baixo erro de generalização e baixa complexidade. Tais resultados são relevantes para mostrar que a técnica meta-heurística de otimização por enxames de partículas é uma opção efetiva para o ajuste de pesos e arquiteturas de redes neurais MLP
publishDate 2007
dc.date.none.fl_str_mv 2007
2014-06-12T16:00:06Z
2014-06-12T16:00:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Ribeiro de Carvalho, Marcio; Bernarda Ludermir, Teresa. Uma análise de otimização de redes neurais MLP por exames de partículas. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007.
https://repositorio.ufpe.br/handle/123456789/2672
identifier_str_mv Ribeiro de Carvalho, Marcio; Bernarda Ludermir, Teresa. Uma análise de otimização de redes neurais MLP por exames de partículas. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007.
url https://repositorio.ufpe.br/handle/123456789/2672
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041905617371136