Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: SANTOS, Maria das Graças dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/6968
Resumo: No estudo das variáveis aleatórias contínuas um dos problemas é o cálculo de probabilidades, visto que é necessário resolver uma integral definida da função densidade que, na maioria das vezes, não possui primitiva explícita ou cuja primitiva não é simples de obter. Embora integrais de funções densidade de probabilidade como a exponencial e a uniforme sejam resolvidas analiticamente seu valor numérico no computador é dado por aproximação, e portanto afetado por erros de arredondamento ou truncamento. Outras funções densidade como a normal ou gama, por exemplo, não possuem primitivas na forma analítica, sendo necessário o uso de integração numérica onde erros de arredondamentos e truncamentos são propagados devido às operações aritméticas no computador. O objetivo desta tese é utilizar a Matemática Intervalar e a Aritmética de Exatidão Máxima para calcular intervalos encapsuladores, ou probabilidades autovalidáveis ou probabilidades encapsuladas ou ainda probabilidades intervalares para as variáveis Exponencial, Normal Padrão e Uniforme. No caso da Exponencial e Normal Padrão, o método proposto usou Simpson Intervalar. A Uniforme, devido ao fato de ter derivada de ordem quatro nula, teve uma forma diferente de encapsular probabilidades. A metodologia aqui proposta foi implementada no IntLab. Resultados numéricos ilustraram os teóricos. Adicionalmente, são mostrados como cálculos autovalidáveis podem ser usados em probabilidade condicional e independência
id UFPE_beb285ad2cdbbe9d3dfa77b453f50587
oai_identifier_str oai:repositorio.ufpe.br:123456789/6968
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniformeAritmética de Exatidão MáximaMatemática IntervalarProbabilidadeNo estudo das variáveis aleatórias contínuas um dos problemas é o cálculo de probabilidades, visto que é necessário resolver uma integral definida da função densidade que, na maioria das vezes, não possui primitiva explícita ou cuja primitiva não é simples de obter. Embora integrais de funções densidade de probabilidade como a exponencial e a uniforme sejam resolvidas analiticamente seu valor numérico no computador é dado por aproximação, e portanto afetado por erros de arredondamento ou truncamento. Outras funções densidade como a normal ou gama, por exemplo, não possuem primitivas na forma analítica, sendo necessário o uso de integração numérica onde erros de arredondamentos e truncamentos são propagados devido às operações aritméticas no computador. O objetivo desta tese é utilizar a Matemática Intervalar e a Aritmética de Exatidão Máxima para calcular intervalos encapsuladores, ou probabilidades autovalidáveis ou probabilidades encapsuladas ou ainda probabilidades intervalares para as variáveis Exponencial, Normal Padrão e Uniforme. No caso da Exponencial e Normal Padrão, o método proposto usou Simpson Intervalar. A Uniforme, devido ao fato de ter derivada de ordem quatro nula, teve uma forma diferente de encapsular probabilidades. A metodologia aqui proposta foi implementada no IntLab. Resultados numéricos ilustraram os teóricos. Adicionalmente, são mostrados como cálculos autovalidáveis podem ser usados em probabilidade condicional e independênciaUniversidade Federal de PernambucoCAMPOS, Marcília AndradeSANTOS, Maria das Graças dos2014-06-12T18:27:59Z2014-06-12T18:27:59Z2010-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfdas Graças dos Santos, Maria; Andrade Campos, Marcília. Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme. 2010. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/6968porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T09:29:17Zoai:repositorio.ufpe.br:123456789/6968Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T09:29:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme
title Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme
spellingShingle Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme
SANTOS, Maria das Graças dos
Aritmética de Exatidão Máxima
Matemática Intervalar
Probabilidade
title_short Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme
title_full Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme
title_fullStr Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme
title_full_unstemmed Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme
title_sort Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme
author SANTOS, Maria das Graças dos
author_facet SANTOS, Maria das Graças dos
author_role author
dc.contributor.none.fl_str_mv CAMPOS, Marcília Andrade
dc.contributor.author.fl_str_mv SANTOS, Maria das Graças dos
dc.subject.por.fl_str_mv Aritmética de Exatidão Máxima
Matemática Intervalar
Probabilidade
topic Aritmética de Exatidão Máxima
Matemática Intervalar
Probabilidade
description No estudo das variáveis aleatórias contínuas um dos problemas é o cálculo de probabilidades, visto que é necessário resolver uma integral definida da função densidade que, na maioria das vezes, não possui primitiva explícita ou cuja primitiva não é simples de obter. Embora integrais de funções densidade de probabilidade como a exponencial e a uniforme sejam resolvidas analiticamente seu valor numérico no computador é dado por aproximação, e portanto afetado por erros de arredondamento ou truncamento. Outras funções densidade como a normal ou gama, por exemplo, não possuem primitivas na forma analítica, sendo necessário o uso de integração numérica onde erros de arredondamentos e truncamentos são propagados devido às operações aritméticas no computador. O objetivo desta tese é utilizar a Matemática Intervalar e a Aritmética de Exatidão Máxima para calcular intervalos encapsuladores, ou probabilidades autovalidáveis ou probabilidades encapsuladas ou ainda probabilidades intervalares para as variáveis Exponencial, Normal Padrão e Uniforme. No caso da Exponencial e Normal Padrão, o método proposto usou Simpson Intervalar. A Uniforme, devido ao fato de ter derivada de ordem quatro nula, teve uma forma diferente de encapsular probabilidades. A metodologia aqui proposta foi implementada no IntLab. Resultados numéricos ilustraram os teóricos. Adicionalmente, são mostrados como cálculos autovalidáveis podem ser usados em probabilidade condicional e independência
publishDate 2010
dc.date.none.fl_str_mv 2010-01-31
2014-06-12T18:27:59Z
2014-06-12T18:27:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv das Graças dos Santos, Maria; Andrade Campos, Marcília. Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme. 2010. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2010.
https://repositorio.ufpe.br/handle/123456789/6968
identifier_str_mv das Graças dos Santos, Maria; Andrade Campos, Marcília. Probabilidades autovalidáveis para as variáveis aleatórias exponencial, normal e uniforme. 2010. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2010.
url https://repositorio.ufpe.br/handle/123456789/6968
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041945749520384