Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/48492 |
Resumo: | Risk Analysis (RA) is crucial to prevent and mitigate potential risk events; however, there are several challenges related to RA. For instance, accident investigation reports are useful sources of information to support safety professionals to propose measures to prevent or mitigate identified occupational accident root causes. Nevertheless, reports’ low quality and lack of detail may limit their usefulness. Moreover, the quality of Quantitative Risk Analysis (QRA) strongly relies on the identification of all potential hazards with major consequences related to the operation of an industrial system, which is usually performed by multiple experts and consumes a considerable amount of time and effort. Since valuable knowledge about an industrial system is stored in the form of textual data, Natural Language Processing (NLP) techniques can be helpful since it can be applied to extract, organize, and classify information from text. Although several studies contributed to the advance of RA, most studies applying NLP focus primarily on automatically identifying patterns from reactive data, such as accident reports, and do not consider the quality of information contained in these documents. In addition, different forms of text data store relevant knowledge about industrial systems and their respective risks, especially proactive data such as documents resulting from preliminary risk studies, and adoption of these data could support preventive risk studies. The main purpose of this study is to develop NLP-based solutions to different issues faced in RA. Thus, this thesis presents two methodologies to (i) identify issues in a hydropower company’s accident investigation reports that may compromise their usefulness as a decision support tool (ii) automatically identify risk features from documents to support the initial stage of QRA in Oil and Gas (O&G) industries. Occupational safety technicians can benefit from the methodology that helps to identify issues and propose improvements to the accident reports. In addition, the second methodology can help experts to identify and assess hypothetical accidental scenarios related to the operation of an industrial facility. Thus, this thesis may contribute to the prevention and mitigation of occupational and/or major accidents and consequently avoid/reduce property damage, economic and social disruption, environmental degradation, and human losses. |
| id |
UFPE_bfa2fdf1c936bd90e46ae78a08338d71 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/48492 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industryEngenharia de produçãoAnálise de riscosRelatório de acidentesProcessamento de linguagem naturalMineração de textoRefinaria de petróleoCompanhia hidroelétricaRisk Analysis (RA) is crucial to prevent and mitigate potential risk events; however, there are several challenges related to RA. For instance, accident investigation reports are useful sources of information to support safety professionals to propose measures to prevent or mitigate identified occupational accident root causes. Nevertheless, reports’ low quality and lack of detail may limit their usefulness. Moreover, the quality of Quantitative Risk Analysis (QRA) strongly relies on the identification of all potential hazards with major consequences related to the operation of an industrial system, which is usually performed by multiple experts and consumes a considerable amount of time and effort. Since valuable knowledge about an industrial system is stored in the form of textual data, Natural Language Processing (NLP) techniques can be helpful since it can be applied to extract, organize, and classify information from text. Although several studies contributed to the advance of RA, most studies applying NLP focus primarily on automatically identifying patterns from reactive data, such as accident reports, and do not consider the quality of information contained in these documents. In addition, different forms of text data store relevant knowledge about industrial systems and their respective risks, especially proactive data such as documents resulting from preliminary risk studies, and adoption of these data could support preventive risk studies. The main purpose of this study is to develop NLP-based solutions to different issues faced in RA. Thus, this thesis presents two methodologies to (i) identify issues in a hydropower company’s accident investigation reports that may compromise their usefulness as a decision support tool (ii) automatically identify risk features from documents to support the initial stage of QRA in Oil and Gas (O&G) industries. Occupational safety technicians can benefit from the methodology that helps to identify issues and propose improvements to the accident reports. In addition, the second methodology can help experts to identify and assess hypothetical accidental scenarios related to the operation of an industrial facility. Thus, this thesis may contribute to the prevention and mitigation of occupational and/or major accidents and consequently avoid/reduce property damage, economic and social disruption, environmental degradation, and human losses.CAPESFACEPECNPqA Análise de Riscos (RA) é essencial para a prevenção e mitigação de potenciais eventos de risco, porém há vários desafios relacionados à execução da análise. Por exemplo, relatórios de acidentes, são fontes úteis de informação para apoiar os especialistas de segurança a propor medidas preventivas/mitigativas das causas acidentais ocupacionais identificadas. Porém, a falta de detalhes e a baixa qualidade dos relatórios podem limitar a sua utilidade. Além disso, a qualidade da Análise Quantitativa de Risco (QRA) depende fortemente da identificação de todos os potenciais perigos com consequências graves, relacionados à operação do sistema industrial, o que consome uma quantidade considerável de tempo e esforço. Nesse contexto, o Processamento de Linguagem Natural (NLP) pode ser útil pois pode ser aplicado para extrair, organizar e classificar a informação do texto. Embora vários estudos tenham contribuído para o avanço da RA, a maior parte dos estudos que aplicam NLP à RA foca principalmente na identificação automática de padrões a partir de dados reativos, tais como relatórios de acidentes, e não consideram a qualidade da informação contida nestes documentos. Além disso, diferentes formas de dados de texto armazenam conhecimento relevante sobre os sistemas industriais e seus respectivos riscos, especialmente dados proativos, como documentos resultantes de estudos preliminares de riscos, e a adoção desses dados poderia apoiar estudos de risco preventivos. Por isso, esta tese apresenta duas metodologias baseadas em NLP para (i) identificar problemas em relatórios de acidentes que possam comprometer a utilidade desses documentos como ferramenta de suporte a decisão e (ii) para identificar características de risco a partir de documentos para apoiar a fase inicial da QRA. A primeira metodologia dá suporte aos técnicos de segurança para identificar problemas e propor melhorias/correções nos relatórios de acidente, contribuindo para uma melhor gestão de acidentes ocupacionais. Além disso a segunda metodologia pode auxiliar especialistas a identificar e avaliar cenários acidentais relacionados a operação de um sistema industrial. Dessa forma essa tese contribui para a prevenção e mitigação de acidentes e consequentemente evita/reduz danos a propriedade, econômicos e sociais, degradação ambiental e perdas humanas.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de ProducaoMOURA, Márcio José das ChagasZIO, Enricohttp://lattes.cnpq.br/2540702750653143http://lattes.cnpq.br/7778828466828647MACÊDO, July Bias2023-01-03T13:19:49Z2023-01-03T13:19:49Z2022-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMACÊDO, July Bias. Development of natural language processing-based solutions for risk analysis: application to a hydropower company and an O&G industry. 2022. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/48492enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-01-04T05:22:51Zoai:repositorio.ufpe.br:123456789/48492Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-01-04T05:22:51Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry |
| title |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry |
| spellingShingle |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry MACÊDO, July Bias Engenharia de produção Análise de riscos Relatório de acidentes Processamento de linguagem natural Mineração de texto Refinaria de petróleo Companhia hidroelétrica |
| title_short |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry |
| title_full |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry |
| title_fullStr |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry |
| title_full_unstemmed |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry |
| title_sort |
Development of natural language processing-based solutions for risk analysis : application to a hydropower company and an O&G industry |
| author |
MACÊDO, July Bias |
| author_facet |
MACÊDO, July Bias |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
MOURA, Márcio José das Chagas ZIO, Enrico http://lattes.cnpq.br/2540702750653143 http://lattes.cnpq.br/7778828466828647 |
| dc.contributor.author.fl_str_mv |
MACÊDO, July Bias |
| dc.subject.por.fl_str_mv |
Engenharia de produção Análise de riscos Relatório de acidentes Processamento de linguagem natural Mineração de texto Refinaria de petróleo Companhia hidroelétrica |
| topic |
Engenharia de produção Análise de riscos Relatório de acidentes Processamento de linguagem natural Mineração de texto Refinaria de petróleo Companhia hidroelétrica |
| description |
Risk Analysis (RA) is crucial to prevent and mitigate potential risk events; however, there are several challenges related to RA. For instance, accident investigation reports are useful sources of information to support safety professionals to propose measures to prevent or mitigate identified occupational accident root causes. Nevertheless, reports’ low quality and lack of detail may limit their usefulness. Moreover, the quality of Quantitative Risk Analysis (QRA) strongly relies on the identification of all potential hazards with major consequences related to the operation of an industrial system, which is usually performed by multiple experts and consumes a considerable amount of time and effort. Since valuable knowledge about an industrial system is stored in the form of textual data, Natural Language Processing (NLP) techniques can be helpful since it can be applied to extract, organize, and classify information from text. Although several studies contributed to the advance of RA, most studies applying NLP focus primarily on automatically identifying patterns from reactive data, such as accident reports, and do not consider the quality of information contained in these documents. In addition, different forms of text data store relevant knowledge about industrial systems and their respective risks, especially proactive data such as documents resulting from preliminary risk studies, and adoption of these data could support preventive risk studies. The main purpose of this study is to develop NLP-based solutions to different issues faced in RA. Thus, this thesis presents two methodologies to (i) identify issues in a hydropower company’s accident investigation reports that may compromise their usefulness as a decision support tool (ii) automatically identify risk features from documents to support the initial stage of QRA in Oil and Gas (O&G) industries. Occupational safety technicians can benefit from the methodology that helps to identify issues and propose improvements to the accident reports. In addition, the second methodology can help experts to identify and assess hypothetical accidental scenarios related to the operation of an industrial facility. Thus, this thesis may contribute to the prevention and mitigation of occupational and/or major accidents and consequently avoid/reduce property damage, economic and social disruption, environmental degradation, and human losses. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-12-20 2023-01-03T13:19:49Z 2023-01-03T13:19:49Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
MACÊDO, July Bias. Development of natural language processing-based solutions for risk analysis: application to a hydropower company and an O&G industry. 2022. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2022. https://repositorio.ufpe.br/handle/123456789/48492 |
| identifier_str_mv |
MACÊDO, July Bias. Development of natural language processing-based solutions for risk analysis: application to a hydropower company and an O&G industry. 2022. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2022. |
| url |
https://repositorio.ufpe.br/handle/123456789/48492 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042063428059136 |