Spatial decision model for urban planning

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: ROSA, Amanda Gadelha Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/49943
Resumo: The decision-making process is an innate task for human beings, and since all choices and actions are based on preferences, decisions are naturally made. However, there are more complex decisions that require the use of Multiple Criteria Decision Making/ Analysis (MCDM/A). This thesis presents a collection of articles based on the use of statistical, optimization, and multi- criteria methods for urban planning regarding spatial decision-making. Particularly, we propose the assessment of attractiveness, connectivity, vulnerability to crime and exploration of the role of attractiveness and connectivity in crime event. For this, we used multiple data sources (Brazilian Institute of Geography and Statistics (IBGE), Brazilian National Civil Aviation Agency (ANAC), Brazilian National Telecommunications Agency (ANATEL), Brazilian Central Banking (BCB), OpenStreetMaps (OSM), Google Maps and crime data) which were cleaned and preprocessed to select criteria to achieve these objectives. Utilités Additives Discriminantes (UTADIS) and Dominance-based Rough Set Approach (DRSA) are MCDM/A methods. Through UTADIS, we found that almost 86% of municipalities in Pernambuco are classified as very low attractive, which can alert policymakers to meet population demands. In order to reveal the vulnerability of an area in a city in the state of Pernambuco, Brazil, we used DRSA and found that the presence of at least 15 restaurants can lead to a Census tract (CT) being classified as very highly vulnerable. The results also demonstrated pessimism in relation to vulnerability by indicating the evaluation of areas as more vulnerable than they really are. Regarding the connectivity, we proposed the elucidation of logistics terminals in individual perception, once the connectivity can be measured through the data of connectivity, the information concerning the coverage area and the flows between logistics terminal were considered as factor of contribution in preference analysis, Goal Programming (GP) and Linear Programming (LP) were considered for this objective. Lastly, the exploration of crime events based on attractiveness and connectivity outputs analysis revealed that even during the COVID-19 pandemic, the concentration of robberies remained in the same area, and both attractiveness and connectivity are significant in crime patterns. Thus, this thesis presents different approaches to support urban planning and regional development.
id UFPE_cc4dd7cf4afd775e6672a0be477f5c64
oai_identifier_str oai:repositorio.ufpe.br:123456789/49943
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Spatial decision model for urban planningEngenharia de ProduçãoDecision modelUrban planningSpatial decision-makingThe decision-making process is an innate task for human beings, and since all choices and actions are based on preferences, decisions are naturally made. However, there are more complex decisions that require the use of Multiple Criteria Decision Making/ Analysis (MCDM/A). This thesis presents a collection of articles based on the use of statistical, optimization, and multi- criteria methods for urban planning regarding spatial decision-making. Particularly, we propose the assessment of attractiveness, connectivity, vulnerability to crime and exploration of the role of attractiveness and connectivity in crime event. For this, we used multiple data sources (Brazilian Institute of Geography and Statistics (IBGE), Brazilian National Civil Aviation Agency (ANAC), Brazilian National Telecommunications Agency (ANATEL), Brazilian Central Banking (BCB), OpenStreetMaps (OSM), Google Maps and crime data) which were cleaned and preprocessed to select criteria to achieve these objectives. Utilités Additives Discriminantes (UTADIS) and Dominance-based Rough Set Approach (DRSA) are MCDM/A methods. Through UTADIS, we found that almost 86% of municipalities in Pernambuco are classified as very low attractive, which can alert policymakers to meet population demands. In order to reveal the vulnerability of an area in a city in the state of Pernambuco, Brazil, we used DRSA and found that the presence of at least 15 restaurants can lead to a Census tract (CT) being classified as very highly vulnerable. The results also demonstrated pessimism in relation to vulnerability by indicating the evaluation of areas as more vulnerable than they really are. Regarding the connectivity, we proposed the elucidation of logistics terminals in individual perception, once the connectivity can be measured through the data of connectivity, the information concerning the coverage area and the flows between logistics terminal were considered as factor of contribution in preference analysis, Goal Programming (GP) and Linear Programming (LP) were considered for this objective. Lastly, the exploration of crime events based on attractiveness and connectivity outputs analysis revealed that even during the COVID-19 pandemic, the concentration of robberies remained in the same area, and both attractiveness and connectivity are significant in crime patterns. Thus, this thesis presents different approaches to support urban planning and regional development.FACEPEO processo de tomada de decisão é uma tarefa inerente ao ser humano, e como todas as escolhas e ações são baseadas em preferências, decisões são tomadas naturalmente. No entanto, existem decisões mais complexas que requerem o uso da abordagem multicritério para suporte à decisão (MCDM/A). Esta tese apresenta a construção de um processo multimetodológico para suporte a problemas de planejamento urbano. Em particular, propõe-se a análise de atratividade, conectividade e vulnerabilidade ao crime. Para isso, múltiplas fontes de dados foram utilizadas para seleção de critérios. A análise de atratividade considerou seis indicadores administrativos de um conjunto de 127 variáveis e a disponibilidade de serviços em uma dada região, que em conjunto evidenciaram a necessidade de 86% dos municípios pernambucanos em atender as demandas populacionais e organizacionais. Na análise de vulnerabilidade ao crime, a identificação dos critérios baseou-se no processo de exploração de fatores por meio de técnicas de análise espacial e estatística. A caracterização de vulnerabilidade de uma região se deu por meio da geração de regras de decisão no método DRSA, tornando mais intuitivo os fatores que levam uma região a ser mais vulnerável que outra. Em relação à conectividade, propôs-se a elucidação dos terminais logísticos, suas respectivas áreas de cobertura, e fluxos entre eles como fator de contribuição à conectividade resultante dos aspectos locais. Por fim, as exploração de eventos criminais com base nas saídas das análises de atratividade e conectividade revelou que ambas são significativas nos padrões de criminalidade. Assim, esta tese apresenta diferentes abordagens para apoiar o planejamento urbano e o desenvolvimento regional.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de ProducaoMOTA, Caroline Maria de Mirandahttp://lattes.cnpq.br/7220724194331597http://lattes.cnpq.br/7211565565446890ROSA, Amanda Gadelha Ferreira2023-05-08T12:08:13Z2023-05-08T12:08:13Z2023-04-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfROSA, Amanda Gadelha Ferreira. Spatial decision model for urban planning. 2023. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/49943enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-05-09T05:15:14Zoai:repositorio.ufpe.br:123456789/49943Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-05-09T05:15:14Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Spatial decision model for urban planning
title Spatial decision model for urban planning
spellingShingle Spatial decision model for urban planning
ROSA, Amanda Gadelha Ferreira
Engenharia de Produção
Decision model
Urban planning
Spatial decision-making
title_short Spatial decision model for urban planning
title_full Spatial decision model for urban planning
title_fullStr Spatial decision model for urban planning
title_full_unstemmed Spatial decision model for urban planning
title_sort Spatial decision model for urban planning
author ROSA, Amanda Gadelha Ferreira
author_facet ROSA, Amanda Gadelha Ferreira
author_role author
dc.contributor.none.fl_str_mv MOTA, Caroline Maria de Miranda
http://lattes.cnpq.br/7220724194331597
http://lattes.cnpq.br/7211565565446890
dc.contributor.author.fl_str_mv ROSA, Amanda Gadelha Ferreira
dc.subject.por.fl_str_mv Engenharia de Produção
Decision model
Urban planning
Spatial decision-making
topic Engenharia de Produção
Decision model
Urban planning
Spatial decision-making
description The decision-making process is an innate task for human beings, and since all choices and actions are based on preferences, decisions are naturally made. However, there are more complex decisions that require the use of Multiple Criteria Decision Making/ Analysis (MCDM/A). This thesis presents a collection of articles based on the use of statistical, optimization, and multi- criteria methods for urban planning regarding spatial decision-making. Particularly, we propose the assessment of attractiveness, connectivity, vulnerability to crime and exploration of the role of attractiveness and connectivity in crime event. For this, we used multiple data sources (Brazilian Institute of Geography and Statistics (IBGE), Brazilian National Civil Aviation Agency (ANAC), Brazilian National Telecommunications Agency (ANATEL), Brazilian Central Banking (BCB), OpenStreetMaps (OSM), Google Maps and crime data) which were cleaned and preprocessed to select criteria to achieve these objectives. Utilités Additives Discriminantes (UTADIS) and Dominance-based Rough Set Approach (DRSA) are MCDM/A methods. Through UTADIS, we found that almost 86% of municipalities in Pernambuco are classified as very low attractive, which can alert policymakers to meet population demands. In order to reveal the vulnerability of an area in a city in the state of Pernambuco, Brazil, we used DRSA and found that the presence of at least 15 restaurants can lead to a Census tract (CT) being classified as very highly vulnerable. The results also demonstrated pessimism in relation to vulnerability by indicating the evaluation of areas as more vulnerable than they really are. Regarding the connectivity, we proposed the elucidation of logistics terminals in individual perception, once the connectivity can be measured through the data of connectivity, the information concerning the coverage area and the flows between logistics terminal were considered as factor of contribution in preference analysis, Goal Programming (GP) and Linear Programming (LP) were considered for this objective. Lastly, the exploration of crime events based on attractiveness and connectivity outputs analysis revealed that even during the COVID-19 pandemic, the concentration of robberies remained in the same area, and both attractiveness and connectivity are significant in crime patterns. Thus, this thesis presents different approaches to support urban planning and regional development.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-08T12:08:13Z
2023-05-08T12:08:13Z
2023-04-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ROSA, Amanda Gadelha Ferreira. Spatial decision model for urban planning. 2023. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2023.
https://repositorio.ufpe.br/handle/123456789/49943
identifier_str_mv ROSA, Amanda Gadelha Ferreira. Spatial decision model for urban planning. 2023. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2023.
url https://repositorio.ufpe.br/handle/123456789/49943
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041909025243136