Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/18620 |
Resumo: | Desde os anos 1960, foram criadas inúmeras técnicas para segmentação de imagens, contudo poucas se aproximam do nível de desempenho humano, sendo essas computacionalmente custosas e inadequadas para aplicação em tempo real. Portanto, nesta tese é apresentada uma técnica de segmentação de baixo custo computacional, baseada em descontinuidades e em multirresolução, voltada à detecção de contornos de objetos em imagens naturais – fotografias do mundo real. A estrutura da técnica proposta é dividida em cinco etapas. Na primeira, atributos de cor e foco são realçados na imagem de entrada. O mapeamento de cor realça as diferenças de cor entre os canais RGB e propicia a detecção de bordas entre os canais de cor por operadores de gradiente. Dois modelos de cor de diferença cromática, RhGhBh e LgC, são propostos para esse fim. Também é proposta a transformada de decomposição de cor que segmenta a escala de cor RGB em canais independentes, isolando as cores aditivas e subtrativas, e os tons de cinza. Assim, é possível mensurar a variação local de cada cor para criar um mapeamento das regiões em foco. Na segunda etapa, uma filtragem morfológica para supressão de texturas suaviza as mudanças abruptas de cor no interior das mesmas, possibilitando a identificação de seus contornos e diminuindo a falsa identificação de bordas internas. Na terceira etapa, oito máscaras orientadas, batizadas de máscaras de detecção de contornos, são usadas para calcular o gradiente local, realçando os contornos dos objetos em detrimento de suas bordas internas. Na quarta etapa, um afinamento em tons de cinza é realizado por meio de um empilhamento topológico das bordas erodidas e suavizadas, no qual os pixels de bordas maximamente centralizados são isolados e afinados morfologicamente. Por fim, na quinta etapa, a intensidade das bordas é corrigida função do gradiente local e da densidade local das bordas, realçando os contornos dos objetos. Comparações com técnicas de segmentação recentes e clássicas são conduzidas com auxílio do Berkeley Segmentation Dataset and Benchmark. Os resultados obtidos posicionam a técnica proposta em quinto lugar no Benchmark, com tempo de processamento inferior a 0,5% do tempo das técnicas melhor classificadas, sendo adequada para uso em tempo real. |
| id |
UFPE_cd577f044de273aa34b99d2370002fc8 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/18620 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturasSegmentação de ImagensDetecção de ContornosOperadores de GradienteModelos de CorFocoAfinamento em Tons de CinzaSupressão de TexturasImage SegmentationContour DetectionGradient OperatorsColor ModelsFocusGrayscale ThinningTexture SuppressionDesde os anos 1960, foram criadas inúmeras técnicas para segmentação de imagens, contudo poucas se aproximam do nível de desempenho humano, sendo essas computacionalmente custosas e inadequadas para aplicação em tempo real. Portanto, nesta tese é apresentada uma técnica de segmentação de baixo custo computacional, baseada em descontinuidades e em multirresolução, voltada à detecção de contornos de objetos em imagens naturais – fotografias do mundo real. A estrutura da técnica proposta é dividida em cinco etapas. Na primeira, atributos de cor e foco são realçados na imagem de entrada. O mapeamento de cor realça as diferenças de cor entre os canais RGB e propicia a detecção de bordas entre os canais de cor por operadores de gradiente. Dois modelos de cor de diferença cromática, RhGhBh e LgC, são propostos para esse fim. Também é proposta a transformada de decomposição de cor que segmenta a escala de cor RGB em canais independentes, isolando as cores aditivas e subtrativas, e os tons de cinza. Assim, é possível mensurar a variação local de cada cor para criar um mapeamento das regiões em foco. Na segunda etapa, uma filtragem morfológica para supressão de texturas suaviza as mudanças abruptas de cor no interior das mesmas, possibilitando a identificação de seus contornos e diminuindo a falsa identificação de bordas internas. Na terceira etapa, oito máscaras orientadas, batizadas de máscaras de detecção de contornos, são usadas para calcular o gradiente local, realçando os contornos dos objetos em detrimento de suas bordas internas. Na quarta etapa, um afinamento em tons de cinza é realizado por meio de um empilhamento topológico das bordas erodidas e suavizadas, no qual os pixels de bordas maximamente centralizados são isolados e afinados morfologicamente. Por fim, na quinta etapa, a intensidade das bordas é corrigida função do gradiente local e da densidade local das bordas, realçando os contornos dos objetos. Comparações com técnicas de segmentação recentes e clássicas são conduzidas com auxílio do Berkeley Segmentation Dataset and Benchmark. Os resultados obtidos posicionam a técnica proposta em quinto lugar no Benchmark, com tempo de processamento inferior a 0,5% do tempo das técnicas melhor classificadas, sendo adequada para uso em tempo real.CNPQSince the 1960’s, numerous image segmentation techniques were developed, however only a few approach human level segmentation, being computationally costly and inadequate to real time applications. Therefore, this Thesis presents a low computational cost multi-resolution and edge-based image segmentation technique for objects’ contour detection in natural images – real world scenes photographs. The proposed technique’s framework is divided into five steps. First, color and focus features are mapped from the input image. The color mapping enhances the color differences between RGB channels, allowing the inter-channel colors edge detection by gradient operators. Two chromatic difference color models are proposed, RhGhBh and LgC. The color decomposition transform is also proposed, which is able to segment the RGB color scale in independent channels, isolating the additive and subtractive colors, and the shades of gray. The transform allows the measurement of the local variation within each color, thus, producing the image´s focus map. In the second step, a morphological texture suppression filtering smoothes abrupt color changes inside textures, allowing textures’ outer edges detection and decreasing the false identification of texture inner edges as objects’ contours. In the third step, eight oriented masks, called contour detection masks, are used to calculate the local gradient, enhancing the objects’ contours over their inner edges. In the fourth step, a grayscale thinning is performed through a topological stacking of eroded and smoothed edges, where the maximally centered edge pixels are isolated and morphologically thinned. Finally, in the fifth step, the edges’ intensities are corrected to reflect the local gradient and the local edges’ density, allowing better identification of objects’ contours. Comparisons with recent and classic segmentation techniques are conducted by the Berkeley Segmentation Dataset and Benchmark. The results rank the proposed segmentation in fith position in the Benchmark, with a processing time below 0.5% of the better ranked techniques, being suitable for real-time applications.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoMELLO, Carlos Alexandre Barros dehttp://lattes.cnpq.br/8414130253743623http://lattes.cnpq.br/2248591013863307COSTA, Diogo Cavalcanti2017-04-24T14:27:21Z2017-04-24T14:27:21Z2015-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/18620porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:28:15Zoai:repositorio.ufpe.br:123456789/18620Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:28:15Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas |
| title |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas |
| spellingShingle |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas COSTA, Diogo Cavalcanti Segmentação de Imagens Detecção de Contornos Operadores de Gradiente Modelos de Cor Foco Afinamento em Tons de Cinza Supressão de Texturas Image Segmentation Contour Detection Gradient Operators Color Models Focus Grayscale Thinning Texture Suppression |
| title_short |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas |
| title_full |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas |
| title_fullStr |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas |
| title_full_unstemmed |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas |
| title_sort |
Segmentação de imagens naturais baseada em modelos de cor de diferença cromática, máscaras de detecção de contornos e supressão morfológica de texturas |
| author |
COSTA, Diogo Cavalcanti |
| author_facet |
COSTA, Diogo Cavalcanti |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
MELLO, Carlos Alexandre Barros de http://lattes.cnpq.br/8414130253743623 http://lattes.cnpq.br/2248591013863307 |
| dc.contributor.author.fl_str_mv |
COSTA, Diogo Cavalcanti |
| dc.subject.por.fl_str_mv |
Segmentação de Imagens Detecção de Contornos Operadores de Gradiente Modelos de Cor Foco Afinamento em Tons de Cinza Supressão de Texturas Image Segmentation Contour Detection Gradient Operators Color Models Focus Grayscale Thinning Texture Suppression |
| topic |
Segmentação de Imagens Detecção de Contornos Operadores de Gradiente Modelos de Cor Foco Afinamento em Tons de Cinza Supressão de Texturas Image Segmentation Contour Detection Gradient Operators Color Models Focus Grayscale Thinning Texture Suppression |
| description |
Desde os anos 1960, foram criadas inúmeras técnicas para segmentação de imagens, contudo poucas se aproximam do nível de desempenho humano, sendo essas computacionalmente custosas e inadequadas para aplicação em tempo real. Portanto, nesta tese é apresentada uma técnica de segmentação de baixo custo computacional, baseada em descontinuidades e em multirresolução, voltada à detecção de contornos de objetos em imagens naturais – fotografias do mundo real. A estrutura da técnica proposta é dividida em cinco etapas. Na primeira, atributos de cor e foco são realçados na imagem de entrada. O mapeamento de cor realça as diferenças de cor entre os canais RGB e propicia a detecção de bordas entre os canais de cor por operadores de gradiente. Dois modelos de cor de diferença cromática, RhGhBh e LgC, são propostos para esse fim. Também é proposta a transformada de decomposição de cor que segmenta a escala de cor RGB em canais independentes, isolando as cores aditivas e subtrativas, e os tons de cinza. Assim, é possível mensurar a variação local de cada cor para criar um mapeamento das regiões em foco. Na segunda etapa, uma filtragem morfológica para supressão de texturas suaviza as mudanças abruptas de cor no interior das mesmas, possibilitando a identificação de seus contornos e diminuindo a falsa identificação de bordas internas. Na terceira etapa, oito máscaras orientadas, batizadas de máscaras de detecção de contornos, são usadas para calcular o gradiente local, realçando os contornos dos objetos em detrimento de suas bordas internas. Na quarta etapa, um afinamento em tons de cinza é realizado por meio de um empilhamento topológico das bordas erodidas e suavizadas, no qual os pixels de bordas maximamente centralizados são isolados e afinados morfologicamente. Por fim, na quinta etapa, a intensidade das bordas é corrigida função do gradiente local e da densidade local das bordas, realçando os contornos dos objetos. Comparações com técnicas de segmentação recentes e clássicas são conduzidas com auxílio do Berkeley Segmentation Dataset and Benchmark. Os resultados obtidos posicionam a técnica proposta em quinto lugar no Benchmark, com tempo de processamento inferior a 0,5% do tempo das técnicas melhor classificadas, sendo adequada para uso em tempo real. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-03-02 2017-04-24T14:27:21Z 2017-04-24T14:27:21Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/18620 |
| url |
https://repositorio.ufpe.br/handle/123456789/18620 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041964588236800 |