Exportação concluída — 

Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: SILVA, Hilson Barbosa da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/18034
Resumo: Contexto: A Computação em Nuvem apresenta um novo conceito de terceirização na contratação de serviço, esses avanços vêm sendo vistos como uma nova possibilidade para a redução nos volumes dos investimentos em TIC, proporcionados pela maior flexibilidade nos serviços ofertados sob demanda, tendo na redução de custo seu apelo mais forte. Mesmo sabendo dos benefícios do investimento em nuvem, presume-se que algumas empresas são receosas na contratação de serviços e/ou infraestruturas de TIC da computação em nuvem. Essa realidade, apresentada na pesquisa da Tech Supply, especializada em Inteligência Tecnológica para Auditoria e Integridade Corporativa e TI, segundo a qual 43% das empresas brasileiras não se sentem seguras para migrar os seus sistemas para nuvem. Objetivo: Nesse contexto geral, apresentam-se dois objetivos: investigar os indícios pelos quais algumas empresas podem estar propensas a contratarem ou não os serviços de Computação em Nuvem no Brasil. Adicionalmente, identificar i e e j de sua satisfação ou insatisfação em relação aos serviços de nuvem contratados no Brasil. Método: Para este estudo, definiu-se o tipo de pesquisa realizada como exploratória de natureza descritiva e explicativa, com ênfase na abordagem quantitativa. Quanto ao procedimento técnico, aplicou-se um levantamento através de um Survey, utilizando-se o instrumento de um questionário com 14 (quatorze) itens. Referente à coleta dessas informações, disponibilizou-se através de um formulário WEB (Online). E, por fim, quanto ao tipo de análise aplicada aos resultados, utilizou-se o aprendizado automático para extração dos resultados. Com o uso de aprendizado automático, faz-se necessário o estabelecimento de algumas definições em relação aos métodos de aprendizagem a serem aplicados, como tarefa de classificação por árvore de decisão com algoritmo de classificação J48, método de aprendizagem por indução. Para o modo de treinamento, aplicou-se o não incremental. Na hierarquia do aprendizado, utilizou-se o aprendizado supervisionado e para o paradigma de aprendizado, usou-se o simbólico. Definiram-se também as variáveis classificadoras para cada linha de investigação: “SIM” en c n “NÃO”, para as empresas que não usam; e “SATISFEITO” ou “INSATISFEITO” c n e , para as empresas que já usam. Resultado: Descobriu-se que as características das empresas que estão propensas a contratar a nuvem são garantia de entrega e qualidade dos serviços. Em contrapartida, as empresas que não estão propensas a contratar os serviços da nuvem têm como características o baixo faturamento e poucos colaboradores associados à confiabilidade e segurança da informação. Para a outra linha de investigação, em relação à satisfação, os motivos são o preço da nuvem associado aos modelos de Infraestrutura e Software como Serviço. Por outro lado, para as empresas que estão insatisfeitas, os motivos são segurança da informação, disponibilidade dos serviços associados à redução de custo.
id UFPE_d75252df94bba7b993b4b00a36d055ac
oai_identifier_str oai:repositorio.ufpe.br:123456789/18034
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no BrasilComputação em NuvemAlgoritmo InteligenteClassificaçãoExtração do conhecimentoAprendizado automáticoSurveyCloud ComputingIntelligent AlgorithmClassificationKnowledge ExtractionAutomatic LearningSurveyContexto: A Computação em Nuvem apresenta um novo conceito de terceirização na contratação de serviço, esses avanços vêm sendo vistos como uma nova possibilidade para a redução nos volumes dos investimentos em TIC, proporcionados pela maior flexibilidade nos serviços ofertados sob demanda, tendo na redução de custo seu apelo mais forte. Mesmo sabendo dos benefícios do investimento em nuvem, presume-se que algumas empresas são receosas na contratação de serviços e/ou infraestruturas de TIC da computação em nuvem. Essa realidade, apresentada na pesquisa da Tech Supply, especializada em Inteligência Tecnológica para Auditoria e Integridade Corporativa e TI, segundo a qual 43% das empresas brasileiras não se sentem seguras para migrar os seus sistemas para nuvem. Objetivo: Nesse contexto geral, apresentam-se dois objetivos: investigar os indícios pelos quais algumas empresas podem estar propensas a contratarem ou não os serviços de Computação em Nuvem no Brasil. Adicionalmente, identificar i e e j de sua satisfação ou insatisfação em relação aos serviços de nuvem contratados no Brasil. Método: Para este estudo, definiu-se o tipo de pesquisa realizada como exploratória de natureza descritiva e explicativa, com ênfase na abordagem quantitativa. Quanto ao procedimento técnico, aplicou-se um levantamento através de um Survey, utilizando-se o instrumento de um questionário com 14 (quatorze) itens. Referente à coleta dessas informações, disponibilizou-se através de um formulário WEB (Online). E, por fim, quanto ao tipo de análise aplicada aos resultados, utilizou-se o aprendizado automático para extração dos resultados. Com o uso de aprendizado automático, faz-se necessário o estabelecimento de algumas definições em relação aos métodos de aprendizagem a serem aplicados, como tarefa de classificação por árvore de decisão com algoritmo de classificação J48, método de aprendizagem por indução. Para o modo de treinamento, aplicou-se o não incremental. Na hierarquia do aprendizado, utilizou-se o aprendizado supervisionado e para o paradigma de aprendizado, usou-se o simbólico. Definiram-se também as variáveis classificadoras para cada linha de investigação: “SIM” en c n “NÃO”, para as empresas que não usam; e “SATISFEITO” ou “INSATISFEITO” c n e , para as empresas que já usam. Resultado: Descobriu-se que as características das empresas que estão propensas a contratar a nuvem são garantia de entrega e qualidade dos serviços. Em contrapartida, as empresas que não estão propensas a contratar os serviços da nuvem têm como características o baixo faturamento e poucos colaboradores associados à confiabilidade e segurança da informação. Para a outra linha de investigação, em relação à satisfação, os motivos são o preço da nuvem associado aos modelos de Infraestrutura e Software como Serviço. Por outro lado, para as empresas que estão insatisfeitas, os motivos são segurança da informação, disponibilidade dos serviços associados à redução de custo.Context: Cloud computing presents a new concept of outsourcing at hiring services, these advances have been seen as a new possibility for reduction at volume of investments in ICT, provided for greater flexibility in offered on-demand services, with cost reduction its strongest appeal. Even though the c d in e en benefi i ‟ assumed that some companies are afraid for contracting services and / or cloud c ing ICT inf c e. Thi e i y e en ed in he Tech S y‟ e e ch specializing in Technology Intelligence for Audit and Corporate Integrity and IT, according to which 43% of Brazilian companies do not feel safe to migrate their cloud systems. Objective: In general, there are two objectives: to investigate the evidence by which some companies may be prone to hire or not the Computing Cloud services in Brazil. In addition, identify the reasons for those that already use their satisfaction or dissatisfaction with the cloud services contracted in Brazil. Method: For this study, the type of research conducted was defined as exploratory of descriptive and explanatory nature, with an emphasis on quantitative approach. As for the technical procedure, was applied a survey through a Survey, using the instrument of a questionnaire with 14 (fourteen) items. Concerning the collection of this information, it made available through a web form (Online). Finally, the type of analysis applied to the results, we used the automatic learning for extracting results. With the use of automatic learning, it is necessary to establish some definitions regarding learning methods to applied as a classification task by decision tree classification algorithm J48¹, learning method for induction. For the training mode, applied to the non-incremental. In the learning hierarchy, we used supervised learning and the learning paradigm, was used the symbolic. The classification variables was defined for each research line: "YES" likely to hire or "NO" for companies that do not use; and "SATISFIED" or "DISSATISFIED" with the cloud, for companies that already use. Result: It found that the characteristics of companies that are likely to hire the cloud are delivery assurance and service quality. Conversely, companies that are not likely to hire cloud services characterized by low turnover and few employees associated with the reliability and information security. For another line of research in relation to satisfaction, the reasons are the price associated with cloud models Infrastructure and Software as a Service. On the other hand, for companies that are dissatisfied, the reasons are information security, availability of services associated with cost reduction.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoGARCIA, Vinicius CardosoSOUZA, Thiago Carvalho deSILVA, Hilson Barbosa da2016-10-31T12:50:59Z2016-10-31T12:50:59Z2016-01-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/18034porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T19:10:09Zoai:repositorio.ufpe.br:123456789/18034Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T19:10:09Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil
title Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil
spellingShingle Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil
SILVA, Hilson Barbosa da
Computação em Nuvem
Algoritmo Inteligente
Classificação
Extração do conhecimento
Aprendizado automático
Survey
Cloud Computing
Intelligent Algorithm
Classification
Knowledge Extraction
Automatic Learning
Survey
title_short Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil
title_full Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil
title_fullStr Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil
title_full_unstemmed Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil
title_sort Uma investigação sobre o processo migrátorio para a plataforma de computação em nuvem no Brasil
author SILVA, Hilson Barbosa da
author_facet SILVA, Hilson Barbosa da
author_role author
dc.contributor.none.fl_str_mv GARCIA, Vinicius Cardoso
SOUZA, Thiago Carvalho de
dc.contributor.author.fl_str_mv SILVA, Hilson Barbosa da
dc.subject.por.fl_str_mv Computação em Nuvem
Algoritmo Inteligente
Classificação
Extração do conhecimento
Aprendizado automático
Survey
Cloud Computing
Intelligent Algorithm
Classification
Knowledge Extraction
Automatic Learning
Survey
topic Computação em Nuvem
Algoritmo Inteligente
Classificação
Extração do conhecimento
Aprendizado automático
Survey
Cloud Computing
Intelligent Algorithm
Classification
Knowledge Extraction
Automatic Learning
Survey
description Contexto: A Computação em Nuvem apresenta um novo conceito de terceirização na contratação de serviço, esses avanços vêm sendo vistos como uma nova possibilidade para a redução nos volumes dos investimentos em TIC, proporcionados pela maior flexibilidade nos serviços ofertados sob demanda, tendo na redução de custo seu apelo mais forte. Mesmo sabendo dos benefícios do investimento em nuvem, presume-se que algumas empresas são receosas na contratação de serviços e/ou infraestruturas de TIC da computação em nuvem. Essa realidade, apresentada na pesquisa da Tech Supply, especializada em Inteligência Tecnológica para Auditoria e Integridade Corporativa e TI, segundo a qual 43% das empresas brasileiras não se sentem seguras para migrar os seus sistemas para nuvem. Objetivo: Nesse contexto geral, apresentam-se dois objetivos: investigar os indícios pelos quais algumas empresas podem estar propensas a contratarem ou não os serviços de Computação em Nuvem no Brasil. Adicionalmente, identificar i e e j de sua satisfação ou insatisfação em relação aos serviços de nuvem contratados no Brasil. Método: Para este estudo, definiu-se o tipo de pesquisa realizada como exploratória de natureza descritiva e explicativa, com ênfase na abordagem quantitativa. Quanto ao procedimento técnico, aplicou-se um levantamento através de um Survey, utilizando-se o instrumento de um questionário com 14 (quatorze) itens. Referente à coleta dessas informações, disponibilizou-se através de um formulário WEB (Online). E, por fim, quanto ao tipo de análise aplicada aos resultados, utilizou-se o aprendizado automático para extração dos resultados. Com o uso de aprendizado automático, faz-se necessário o estabelecimento de algumas definições em relação aos métodos de aprendizagem a serem aplicados, como tarefa de classificação por árvore de decisão com algoritmo de classificação J48, método de aprendizagem por indução. Para o modo de treinamento, aplicou-se o não incremental. Na hierarquia do aprendizado, utilizou-se o aprendizado supervisionado e para o paradigma de aprendizado, usou-se o simbólico. Definiram-se também as variáveis classificadoras para cada linha de investigação: “SIM” en c n “NÃO”, para as empresas que não usam; e “SATISFEITO” ou “INSATISFEITO” c n e , para as empresas que já usam. Resultado: Descobriu-se que as características das empresas que estão propensas a contratar a nuvem são garantia de entrega e qualidade dos serviços. Em contrapartida, as empresas que não estão propensas a contratar os serviços da nuvem têm como características o baixo faturamento e poucos colaboradores associados à confiabilidade e segurança da informação. Para a outra linha de investigação, em relação à satisfação, os motivos são o preço da nuvem associado aos modelos de Infraestrutura e Software como Serviço. Por outro lado, para as empresas que estão insatisfeitas, os motivos são segurança da informação, disponibilidade dos serviços associados à redução de custo.
publishDate 2016
dc.date.none.fl_str_mv 2016-10-31T12:50:59Z
2016-10-31T12:50:59Z
2016-01-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/18034
url https://repositorio.ufpe.br/handle/123456789/18034
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042056786378752