Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: da Silva, Daliton
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
KLT
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2256
Resumo: A reconstrução 3D é uma área de pesquisa que consiste em recuperar modelos que representem com precisão e em 3D características de interesse de uma cena, através da extração de informações 3D a partir de imagens 2D. Estas informações podem ser relativas à estrutura de uma determinada cena, posicionamento e trajetória de câmeras, textura, dentre outras. Uma vez de posse de tais informações, podemos utilizá-las para os mais diversos fins, por exemplo, modelagem automática de objetos, sistemas de navegação autônoma de robôs, modelos computacionais de estruturas ou órgãos do corpo humano, posicionamento de elementos virtuais em cenas reais, dentre outros. Uma das formas mais difundidas de se realizar reconstrução 3D é utilizando sequências contíguas de imagens ou vídeos capturados por câmeras convencionais (monoculares). Neste tipo de reconstrução um dos desafios mais importantes é o rastreamento. Rastreamento é a capacidade de conseguir corresponder um conjunto de pontos em uma sequência de imagens, ou seja, dado um ponto A com coordenadas x e y, deve-se ser capaz de identificar o ponto A com coordenadas x e y na imagem seguinte da sequência, e que corresponde exatamente à mesma localidade da estrutura sendo rastreada. Neste contexto, o objetivo desta dissertação de mestrado foi avaliar os algoritmos de rastreamento mais utilizados para este propósito, ressaltando as características individuais de cada um deles e identificando as vantagens e limitações que possuem. Os resultados desta análise podem ser uma ferramenta de auxílio na escolha do algoritmo de rastreamento a ser utilizado quando do desenvolvimento de uma solução de reconstrução 3D, tendo como base o domínio do problema que se deseja atacar. Os três algoritmos analisados foram o SIFT, o KLT e outro Baseado em Similaridade. Foi desenvolvida uma ferramenta de reconstrução 3D baseada em SfM. Esta ferramenta foi utilizada para a coleta de resultados com o rastreamento sendo realizado com SIFT, KLT e Similaridade. Uma etapa importante deste processo foi a definição de um conjunto de métricas para a análise comparativa dos algoritmos. As características individuais de rastreamento de cada um deles trouxeram bons resultados em alguns dos cinco cenários utilizados. Porém, no geral, o rastreador que apresentou os melhores resultados foi o KLT. Uma análise detalhada sobre os resultados desses algoritmos quando empregados para reconstrução 3D é apresentada
id UFPE_df54d50ed595e20145dbc3bf79c3cfce
oai_identifier_str oai:repositorio.ufpe.br:123456789/2256
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3DReconstrução 3DFeature trackingStructure from motionSIFTKLTSimilaridadeA reconstrução 3D é uma área de pesquisa que consiste em recuperar modelos que representem com precisão e em 3D características de interesse de uma cena, através da extração de informações 3D a partir de imagens 2D. Estas informações podem ser relativas à estrutura de uma determinada cena, posicionamento e trajetória de câmeras, textura, dentre outras. Uma vez de posse de tais informações, podemos utilizá-las para os mais diversos fins, por exemplo, modelagem automática de objetos, sistemas de navegação autônoma de robôs, modelos computacionais de estruturas ou órgãos do corpo humano, posicionamento de elementos virtuais em cenas reais, dentre outros. Uma das formas mais difundidas de se realizar reconstrução 3D é utilizando sequências contíguas de imagens ou vídeos capturados por câmeras convencionais (monoculares). Neste tipo de reconstrução um dos desafios mais importantes é o rastreamento. Rastreamento é a capacidade de conseguir corresponder um conjunto de pontos em uma sequência de imagens, ou seja, dado um ponto A com coordenadas x e y, deve-se ser capaz de identificar o ponto A com coordenadas x e y na imagem seguinte da sequência, e que corresponde exatamente à mesma localidade da estrutura sendo rastreada. Neste contexto, o objetivo desta dissertação de mestrado foi avaliar os algoritmos de rastreamento mais utilizados para este propósito, ressaltando as características individuais de cada um deles e identificando as vantagens e limitações que possuem. Os resultados desta análise podem ser uma ferramenta de auxílio na escolha do algoritmo de rastreamento a ser utilizado quando do desenvolvimento de uma solução de reconstrução 3D, tendo como base o domínio do problema que se deseja atacar. Os três algoritmos analisados foram o SIFT, o KLT e outro Baseado em Similaridade. Foi desenvolvida uma ferramenta de reconstrução 3D baseada em SfM. Esta ferramenta foi utilizada para a coleta de resultados com o rastreamento sendo realizado com SIFT, KLT e Similaridade. Uma etapa importante deste processo foi a definição de um conjunto de métricas para a análise comparativa dos algoritmos. As características individuais de rastreamento de cada um deles trouxeram bons resultados em alguns dos cinco cenários utilizados. Porém, no geral, o rastreador que apresentou os melhores resultados foi o KLT. Uma análise detalhada sobre os resultados desses algoritmos quando empregados para reconstrução 3D é apresentadaCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de PernambucoTeichrieb, Verônica da Silva, Daliton2014-06-12T15:55:49Z2014-06-12T15:55:49Z2010-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfda Silva, Daliton; Teichrieb, Verônica. Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/2256porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T15:40:30Zoai:repositorio.ufpe.br:123456789/2256Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:40:30Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D
title Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D
spellingShingle Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D
da Silva, Daliton
Reconstrução 3D
Feature tracking
Structure from motion
SIFT
KLT
Similaridade
title_short Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D
title_full Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D
title_fullStr Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D
title_full_unstemmed Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D
title_sort Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D
author da Silva, Daliton
author_facet da Silva, Daliton
author_role author
dc.contributor.none.fl_str_mv Teichrieb, Verônica
dc.contributor.author.fl_str_mv da Silva, Daliton
dc.subject.por.fl_str_mv Reconstrução 3D
Feature tracking
Structure from motion
SIFT
KLT
Similaridade
topic Reconstrução 3D
Feature tracking
Structure from motion
SIFT
KLT
Similaridade
description A reconstrução 3D é uma área de pesquisa que consiste em recuperar modelos que representem com precisão e em 3D características de interesse de uma cena, através da extração de informações 3D a partir de imagens 2D. Estas informações podem ser relativas à estrutura de uma determinada cena, posicionamento e trajetória de câmeras, textura, dentre outras. Uma vez de posse de tais informações, podemos utilizá-las para os mais diversos fins, por exemplo, modelagem automática de objetos, sistemas de navegação autônoma de robôs, modelos computacionais de estruturas ou órgãos do corpo humano, posicionamento de elementos virtuais em cenas reais, dentre outros. Uma das formas mais difundidas de se realizar reconstrução 3D é utilizando sequências contíguas de imagens ou vídeos capturados por câmeras convencionais (monoculares). Neste tipo de reconstrução um dos desafios mais importantes é o rastreamento. Rastreamento é a capacidade de conseguir corresponder um conjunto de pontos em uma sequência de imagens, ou seja, dado um ponto A com coordenadas x e y, deve-se ser capaz de identificar o ponto A com coordenadas x e y na imagem seguinte da sequência, e que corresponde exatamente à mesma localidade da estrutura sendo rastreada. Neste contexto, o objetivo desta dissertação de mestrado foi avaliar os algoritmos de rastreamento mais utilizados para este propósito, ressaltando as características individuais de cada um deles e identificando as vantagens e limitações que possuem. Os resultados desta análise podem ser uma ferramenta de auxílio na escolha do algoritmo de rastreamento a ser utilizado quando do desenvolvimento de uma solução de reconstrução 3D, tendo como base o domínio do problema que se deseja atacar. Os três algoritmos analisados foram o SIFT, o KLT e outro Baseado em Similaridade. Foi desenvolvida uma ferramenta de reconstrução 3D baseada em SfM. Esta ferramenta foi utilizada para a coleta de resultados com o rastreamento sendo realizado com SIFT, KLT e Similaridade. Uma etapa importante deste processo foi a definição de um conjunto de métricas para a análise comparativa dos algoritmos. As características individuais de rastreamento de cada um deles trouxeram bons resultados em alguns dos cinco cenários utilizados. Porém, no geral, o rastreador que apresentou os melhores resultados foi o KLT. Uma análise detalhada sobre os resultados desses algoritmos quando empregados para reconstrução 3D é apresentada
publishDate 2010
dc.date.none.fl_str_mv 2010-01-31
2014-06-12T15:55:49Z
2014-06-12T15:55:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv da Silva, Daliton; Teichrieb, Verônica. Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.
https://repositorio.ufpe.br/handle/123456789/2256
identifier_str_mv da Silva, Daliton; Teichrieb, Verônica. Uma avaliação de algoritmos de rastreamento 2D para uso em reconstrução 3D. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.
url https://repositorio.ufpe.br/handle/123456789/2256
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041930488545280