Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Santana, Sidney Henrique Campelo de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Geografia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/16721
Resumo: As florestas têm um papel fundamental no sequestro de carbono da atmosfera. Dessa forma, este trabalho tem como principal objetivo quantificar e analisar a biomassa de um fragmento florestal de Pinus uncinata pertencente ao Espaço Natural da Montanha de Alinyà, por meio de ferramentas de sensoriamento remoto. O espaço natural está localizado no município de Figòls y Alinyà, na província Lleida, situada na Catalunha – Espanha. Assim, para realizar este estudo foram selecionadas 7 imagens do sensor TM do Landsat 5 correspondentes aos 1984, 2003, 2006, 2008, 2009, 2010 e 2011 com rota 198 e ponto 31. Seguidamente foram trabalhadas as bandas espectrais de cada imagem e calculados a calibração radiométrica, a reflectância e os índices de vegetação NDVI e SAVI. Com os dados LiDAR foram gerados os Modelos Digitais de Terreno (MDT) e realizados os cálculos estatísticos pertinentes para calcular a biomassa florestal, a área basal e o teor de carbono. As informações obtidas foram projetadas em mapas. Como resultado, o NDVI mostrou-se importante por proporcionar a análise temporal do comportamento da massa florestal. No entanto, o NDVI e o SAVI tiveram seus resultados prejudicados pela influência dos efeitos topográficos. Os modelos de regressão linear para biomassa, área basal e teor de carbono tiveram uma correlação satisfatória com os dados de inventário para duas das cinco zonas consideradas. Dessa forma, foi possível estimar estas variáveis florestais para a zona de estudo. O cálculo de biomassa florestal pelos dados LiDAR resultaram em 9.138,6 t para uma área de 69,04 ha, enquanto que os cálculos de inventário resultaram em 11.638,4 tn. O Teor de carbono o cálculo com os dados LiDAR resultaram em 5.425,04 t diante de 6.520,18 t resultantes dos cálculos com os dados de inventário. Portanto se pode afirmar que a tecnologia LiDAR traz ao estudo florestal uma série de aplicações necessárias para uma efetiva gestão dos sistemas florestais. Além disso, o LiDAR apresenta vantagens diante dos outros métodos convencionais, em relação à sua precisão, temporalidade e varredura, ainda mais diante da urgência de se obter resultados confiáveis no cenário atual de mudanças climáticas e vulnerabilidade dos ecossistemas.
id UFPE_e14c99d6f0bfcc5436fc9af9f5bdfa0f
oai_identifier_str oai:repositorio.ufpe.br:123456789/16721
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativoBiomassa florestalÍndices de vegetaçãoLiDARPinus uncinat.sensoriamento remoto.Forest biomassLiDARPinus uncinataRemote sensingVegetation indexesAs florestas têm um papel fundamental no sequestro de carbono da atmosfera. Dessa forma, este trabalho tem como principal objetivo quantificar e analisar a biomassa de um fragmento florestal de Pinus uncinata pertencente ao Espaço Natural da Montanha de Alinyà, por meio de ferramentas de sensoriamento remoto. O espaço natural está localizado no município de Figòls y Alinyà, na província Lleida, situada na Catalunha – Espanha. Assim, para realizar este estudo foram selecionadas 7 imagens do sensor TM do Landsat 5 correspondentes aos 1984, 2003, 2006, 2008, 2009, 2010 e 2011 com rota 198 e ponto 31. Seguidamente foram trabalhadas as bandas espectrais de cada imagem e calculados a calibração radiométrica, a reflectância e os índices de vegetação NDVI e SAVI. Com os dados LiDAR foram gerados os Modelos Digitais de Terreno (MDT) e realizados os cálculos estatísticos pertinentes para calcular a biomassa florestal, a área basal e o teor de carbono. As informações obtidas foram projetadas em mapas. Como resultado, o NDVI mostrou-se importante por proporcionar a análise temporal do comportamento da massa florestal. No entanto, o NDVI e o SAVI tiveram seus resultados prejudicados pela influência dos efeitos topográficos. Os modelos de regressão linear para biomassa, área basal e teor de carbono tiveram uma correlação satisfatória com os dados de inventário para duas das cinco zonas consideradas. Dessa forma, foi possível estimar estas variáveis florestais para a zona de estudo. O cálculo de biomassa florestal pelos dados LiDAR resultaram em 9.138,6 t para uma área de 69,04 ha, enquanto que os cálculos de inventário resultaram em 11.638,4 tn. O Teor de carbono o cálculo com os dados LiDAR resultaram em 5.425,04 t diante de 6.520,18 t resultantes dos cálculos com os dados de inventário. Portanto se pode afirmar que a tecnologia LiDAR traz ao estudo florestal uma série de aplicações necessárias para uma efetiva gestão dos sistemas florestais. Além disso, o LiDAR apresenta vantagens diante dos outros métodos convencionais, em relação à sua precisão, temporalidade e varredura, ainda mais diante da urgência de se obter resultados confiáveis no cenário atual de mudanças climáticas e vulnerabilidade dos ecossistemas.The forests have a vital role in carbon capture from the atmosphere. Thus, this work has as its main objective to quantify and analyze biomass of a forest fragment of a Pinus uncinata that belongs to Alinyà Mountain Natural Space, through remote sensing tools. The natural area is located in the County of Figòls y Alinyà, in the Lleida province, located in Catalonia-Spain. In this sense, to conduct this study, 7 images were selected from the Landsat 5 TM sensor corresponding to 1984, 2003, 2006, 2008, 2009, 2010 and 2011 with path 198 and row 31. Subsequently, the spectral bands of each image were manipulated, and then the radiometric calibration, reflectance, and the NDVI and SAVI vegetation indexes were calculated. Using the LiDAR data, the Digital Terrain Models (DTM) were generated, and relevant statistical calculations were made to subsequently calculate the forest biomass, basal area, and carbon content. The information obtained was projected on maps. As a result, the NDVI has supported the study by temporally analyzing the behavior of the forest. However, this index, and even more the SAVI, suffered with the influence of topographic effects. The linear regression models for biomass, basal area, and carbon content had a satisfactory correlation with the inventory data for 2 of the 5 areas considered. In this sense, it was possible to estimate these forest variables for the study area. The calculation of forest biomass by LiDAR data resulted in 9,138.6 ton to an area of 69.04 ha, while the inventory calculations resulted in 11,638.4 ton. For the carbon content, the calculation with the LiDAR data resulted in 5,425.04 ton in comparison with the 6,520 .18 ton resulting from the calculations with the inventory data. Hence, it is safe to say that LiDAR technology brings to the forest study a series of applications that are required for an effective management of forest systems. In addition, the LiDAR presents advantages before other conventional methods, regarding its accuracy, temporality, and range, especially on the urgency of obtaining reliable results in the current scenario of climate change and vulnerability of ecosystems.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em GeografiaTorres, Maria Fernanda Abranteshttp://lattes.cnpq.br/5034472088902118Santana, Sidney Henrique Campelo de2016-04-19T14:14:56Z2016-04-19T14:14:56Z2015-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/16721porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T21:23:33Zoai:repositorio.ufpe.br:123456789/16721Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T21:23:33Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo
title Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo
spellingShingle Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo
Santana, Sidney Henrique Campelo de
Biomassa florestal
Índices de vegetação
LiDAR
Pinus uncinat.
sensoriamento remoto.
Forest biomass
LiDAR
Pinus uncinata
Remote sensing
Vegetation indexes
title_short Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo
title_full Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo
title_fullStr Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo
title_full_unstemmed Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo
title_sort Análise da biomassa florestal de Pinus uncinata por meio de ferramentas de sensoriamento remoto passivo e ativo
author Santana, Sidney Henrique Campelo de
author_facet Santana, Sidney Henrique Campelo de
author_role author
dc.contributor.none.fl_str_mv Torres, Maria Fernanda Abrantes
http://lattes.cnpq.br/5034472088902118
dc.contributor.author.fl_str_mv Santana, Sidney Henrique Campelo de
dc.subject.por.fl_str_mv Biomassa florestal
Índices de vegetação
LiDAR
Pinus uncinat.
sensoriamento remoto.
Forest biomass
LiDAR
Pinus uncinata
Remote sensing
Vegetation indexes
topic Biomassa florestal
Índices de vegetação
LiDAR
Pinus uncinat.
sensoriamento remoto.
Forest biomass
LiDAR
Pinus uncinata
Remote sensing
Vegetation indexes
description As florestas têm um papel fundamental no sequestro de carbono da atmosfera. Dessa forma, este trabalho tem como principal objetivo quantificar e analisar a biomassa de um fragmento florestal de Pinus uncinata pertencente ao Espaço Natural da Montanha de Alinyà, por meio de ferramentas de sensoriamento remoto. O espaço natural está localizado no município de Figòls y Alinyà, na província Lleida, situada na Catalunha – Espanha. Assim, para realizar este estudo foram selecionadas 7 imagens do sensor TM do Landsat 5 correspondentes aos 1984, 2003, 2006, 2008, 2009, 2010 e 2011 com rota 198 e ponto 31. Seguidamente foram trabalhadas as bandas espectrais de cada imagem e calculados a calibração radiométrica, a reflectância e os índices de vegetação NDVI e SAVI. Com os dados LiDAR foram gerados os Modelos Digitais de Terreno (MDT) e realizados os cálculos estatísticos pertinentes para calcular a biomassa florestal, a área basal e o teor de carbono. As informações obtidas foram projetadas em mapas. Como resultado, o NDVI mostrou-se importante por proporcionar a análise temporal do comportamento da massa florestal. No entanto, o NDVI e o SAVI tiveram seus resultados prejudicados pela influência dos efeitos topográficos. Os modelos de regressão linear para biomassa, área basal e teor de carbono tiveram uma correlação satisfatória com os dados de inventário para duas das cinco zonas consideradas. Dessa forma, foi possível estimar estas variáveis florestais para a zona de estudo. O cálculo de biomassa florestal pelos dados LiDAR resultaram em 9.138,6 t para uma área de 69,04 ha, enquanto que os cálculos de inventário resultaram em 11.638,4 tn. O Teor de carbono o cálculo com os dados LiDAR resultaram em 5.425,04 t diante de 6.520,18 t resultantes dos cálculos com os dados de inventário. Portanto se pode afirmar que a tecnologia LiDAR traz ao estudo florestal uma série de aplicações necessárias para uma efetiva gestão dos sistemas florestais. Além disso, o LiDAR apresenta vantagens diante dos outros métodos convencionais, em relação à sua precisão, temporalidade e varredura, ainda mais diante da urgência de se obter resultados confiáveis no cenário atual de mudanças climáticas e vulnerabilidade dos ecossistemas.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-31
2016-04-19T14:14:56Z
2016-04-19T14:14:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/16721
url https://repositorio.ufpe.br/handle/123456789/16721
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Geografia
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Geografia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041839875850240