Statistical analysis applied to data classification and image filtering
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Engenharia Eletrica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/25506 |
Resumo: | Statistical analysis is a tool of wide applicability in several areas of scientific knowledge. This thesis makes use of statistical analysis in two different applications: data classification and image processing targeted at document image binarization. In the first case, this thesis presents an analysis of several aspects of the consistency of the classification of the senior researchers in computer science of the Brazilian research council, CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico. The second application of statistical analysis developed in this thesis addresses filtering-out the back to front interference which appears whenever a document is written or typed on both sides of translucent paper. In this topic, an assessment of the most important algorithms found in the literature is made, taking into account a large quantity of parameters such as the strength of the back to front interference, the diffusion of the ink in the paper, and the texture and hue of the paper due to aging. A new binarization algorithm is proposed, which is capable of removing the back-to-front noise in a wide range of documents. Additionally, this thesis proposes a new concept of “intelligent” binarization for complex documents, which besides text encompass several graphical elements such as figures, photos, diagrams, etc. |
| id |
UFPE_e2c646bffce10f77a864968711e8e941 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/25506 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Statistical analysis applied to data classification and image filteringElectrical EingineeringData processingData classificationImage filteringStatistical analysis is a tool of wide applicability in several areas of scientific knowledge. This thesis makes use of statistical analysis in two different applications: data classification and image processing targeted at document image binarization. In the first case, this thesis presents an analysis of several aspects of the consistency of the classification of the senior researchers in computer science of the Brazilian research council, CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico. The second application of statistical analysis developed in this thesis addresses filtering-out the back to front interference which appears whenever a document is written or typed on both sides of translucent paper. In this topic, an assessment of the most important algorithms found in the literature is made, taking into account a large quantity of parameters such as the strength of the back to front interference, the diffusion of the ink in the paper, and the texture and hue of the paper due to aging. A new binarization algorithm is proposed, which is capable of removing the back-to-front noise in a wide range of documents. Additionally, this thesis proposes a new concept of “intelligent” binarization for complex documents, which besides text encompass several graphical elements such as figures, photos, diagrams, etc.Análise estatística é uma ferramenta de grande aplicabilidade em diversas áreas do conhecimento científico. Esta tese faz uso de análise estatística em duas aplicações distintas: classificação de dados e processamento de imagens de documentos visando a binarização. No primeiro caso, é aqui feita uma análise de diversos aspectos da consistência da classificação de pesquisadores sêniores do CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, na área de Ciência da Computação. A segunda aplicação de análise estatística aqui desenvolvida trata da filtragem da interferência frente-verso que surge quando um documento é escrito ou impresso em ambos os lados da folha de um papel translúcido. Neste tópico é inicialmente feita uma análise da qualidade dos mais importantes algoritmos de binarização levando em consideração parâmetros tais como a intensidade da interferência frente-verso, a difusão da tinta no papel e a textura e escurecimento do papel pelo envelhecimento. Um novo algoritmo para a binarização eficiente de documentos com interferência frente-verso é aqui apresentado, tendo se mostrado capaz de remover tal ruído em uma grande gama de documentos. Adicionalmente, é aqui proposta a binarização “inteligente” de documentos complexos que envolvem diversos elementos gráficos (figuras, diagramas, etc).Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia EletricaLINS, Rafael Dueirehttp://lattes.cnpq.br/2140863905290751http://lattes.cnpq.br/7601016626256808ALMEIDA, Marcos Antonio Martins de2018-08-09T20:49:01Z2018-08-09T20:49:01Z2016-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/25506engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T12:12:25Zoai:repositorio.ufpe.br:123456789/25506Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T12:12:25Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Statistical analysis applied to data classification and image filtering |
| title |
Statistical analysis applied to data classification and image filtering |
| spellingShingle |
Statistical analysis applied to data classification and image filtering ALMEIDA, Marcos Antonio Martins de Electrical Eingineering Data processing Data classification Image filtering |
| title_short |
Statistical analysis applied to data classification and image filtering |
| title_full |
Statistical analysis applied to data classification and image filtering |
| title_fullStr |
Statistical analysis applied to data classification and image filtering |
| title_full_unstemmed |
Statistical analysis applied to data classification and image filtering |
| title_sort |
Statistical analysis applied to data classification and image filtering |
| author |
ALMEIDA, Marcos Antonio Martins de |
| author_facet |
ALMEIDA, Marcos Antonio Martins de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
LINS, Rafael Dueire http://lattes.cnpq.br/2140863905290751 http://lattes.cnpq.br/7601016626256808 |
| dc.contributor.author.fl_str_mv |
ALMEIDA, Marcos Antonio Martins de |
| dc.subject.por.fl_str_mv |
Electrical Eingineering Data processing Data classification Image filtering |
| topic |
Electrical Eingineering Data processing Data classification Image filtering |
| description |
Statistical analysis is a tool of wide applicability in several areas of scientific knowledge. This thesis makes use of statistical analysis in two different applications: data classification and image processing targeted at document image binarization. In the first case, this thesis presents an analysis of several aspects of the consistency of the classification of the senior researchers in computer science of the Brazilian research council, CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico. The second application of statistical analysis developed in this thesis addresses filtering-out the back to front interference which appears whenever a document is written or typed on both sides of translucent paper. In this topic, an assessment of the most important algorithms found in the literature is made, taking into account a large quantity of parameters such as the strength of the back to front interference, the diffusion of the ink in the paper, and the texture and hue of the paper due to aging. A new binarization algorithm is proposed, which is capable of removing the back-to-front noise in a wide range of documents. Additionally, this thesis proposes a new concept of “intelligent” binarization for complex documents, which besides text encompass several graphical elements such as figures, photos, diagrams, etc. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-12-21 2018-08-09T20:49:01Z 2018-08-09T20:49:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/25506 |
| url |
https://repositorio.ufpe.br/handle/123456789/25506 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia Eletrica |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia Eletrica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041904736567296 |