Parametrized constant-depth quantum neuron : framework, conception, and applications

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: CARVALHO, Jonathan Henrique Andrade de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/49490
Resumo: Quantum computing has been revolutionizing the development of algorithms, which in- cludes remarkable advances in artificial neural networks. The exploration of inherently quantum phenomena holds the promise of transcending classical computing. However, only noisy intermediate-scale quantum devices are available currently. To demonstrate advantages in this quantum era, the development of quantum algorithms needs to satisfy several software requirements due to the insufficiency of quantum computing resources. In this research, we propose a kernel-based framework of quantum neurons that not only contemplates existing quantum neurons but also makes room to define countless others, including quantum neurons that comply with the present hardware restrictions. For exam- ple, we propose here a quantum neuron that is implemented by a circuit of constant depth with a linear number of elementary single-qubit gates. Existing quantum neurons are im- plemented by exponentially expensive circuits, even using complex multi-qubit gates. We improve the proposed quantum neuron through a parametrization that can change its ac- tivation function shape in order to fit underlying patterns that existing quantum neurons cannot fit. As an initial demonstration, we show the proposed quantum neuron producing optimal solutions for six classification problems that an existing quantum neuron can solve only two of them. After, we benchmark classical and quantum neurons in several classifi- cation problems. As a result, in the majority of the cases, the proposed quantum neuron is the best over all neurons, which solidly confirms its superiority. The parametrization offers flexibility to not only fit a wide range of problems but also to optimize the margin between classes, at least better than the classical neurons and existing quantum ones. In light of those advantages, this research paves the way to develop quantum neural networks that can demonstrate a practical quantum advantage in the current quantum era already.
id UFPE_e2d34c83844da98ba133f0d3de61a9dd
oai_identifier_str oai:repositorio.ufpe.br:123456789/49490
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Parametrized constant-depth quantum neuron : framework, conception, and applicationsInteligência computacionalQuantum computingQuantum neuronKernel machineConstant-depth quantum circuitQuantum computing has been revolutionizing the development of algorithms, which in- cludes remarkable advances in artificial neural networks. The exploration of inherently quantum phenomena holds the promise of transcending classical computing. However, only noisy intermediate-scale quantum devices are available currently. To demonstrate advantages in this quantum era, the development of quantum algorithms needs to satisfy several software requirements due to the insufficiency of quantum computing resources. In this research, we propose a kernel-based framework of quantum neurons that not only contemplates existing quantum neurons but also makes room to define countless others, including quantum neurons that comply with the present hardware restrictions. For exam- ple, we propose here a quantum neuron that is implemented by a circuit of constant depth with a linear number of elementary single-qubit gates. Existing quantum neurons are im- plemented by exponentially expensive circuits, even using complex multi-qubit gates. We improve the proposed quantum neuron through a parametrization that can change its ac- tivation function shape in order to fit underlying patterns that existing quantum neurons cannot fit. As an initial demonstration, we show the proposed quantum neuron producing optimal solutions for six classification problems that an existing quantum neuron can solve only two of them. After, we benchmark classical and quantum neurons in several classifi- cation problems. As a result, in the majority of the cases, the proposed quantum neuron is the best over all neurons, which solidly confirms its superiority. The parametrization offers flexibility to not only fit a wide range of problems but also to optimize the margin between classes, at least better than the classical neurons and existing quantum ones. In light of those advantages, this research paves the way to develop quantum neural networks that can demonstrate a practical quantum advantage in the current quantum era already.FACEPEA computação quântica vem revolucionando o desenvolvimento de algoritmos, o que inclui notáveis avanços em redes neurais artificiais. A exploração de fenômenos inerentemente quânticos traz a promessa de transcender a computação clássica. No entanto, apenas dis- positivos quânticos de escala intermediária e ruidosos estão disponíveis atualmente. Para demonstrar vantagens nesta era quântica, o desenvolvimento de algoritmos quânticos pre- cisa satisfazer diversos requisitos de software devido à insuficiência de recursos computa- cionais quânticos. Nesta pesquisa, nós propomos uma estrutura de neurônios quânticos baseada em kernel que não apenas contempla neurônios quânticos existentes como tam- bém abre espaço para definir inúmeros outros, incluindo neurônios quânticos que atendam às atuais restrições de hardware. Por exemplo, nós propomos aqui um neurônio quântico que é implementado por um circuito de profundidade constante com um número linear de portas elementares de um único bit quântico. Neurônios quânticos existentes são imple- mentados por circuitos exponencialmente custosos, mesmo usando portas complexas de múltiplos bits quânticos. Nós melhoramos o neurônio quântico proposto através de uma parametrização que consegue mudar a forma da sua função de ativação a fim de se ajustar a padrões subjacentes que neurônios quânticos existentes não conseguem se ajustar. Como uma demonstração inicial, nós mostramos o neurônio quântico proposto produzindo solu- ções ótimas para seis problemas de classificação que um neurônio quântico existente con- segue resolver apenas dois deles. Na sequência, nós extensivamente comparamos neurônios quânticos e clássicos em diversos problemas de classificação. Como resultado, na maio- ria dos casos, o neurônio quântico proposto é o melhor entre todos os neurônios, o que confirma sua superioridade de forma sólida. A parametrização fornece flexibilidade para não apenas se ajustar a uma ampla variedade de problemas mas também para otimizar a margem entre classes, pelo menos melhor que os neurônios clássicos e os neurônios quân- ticos existentes. Devido a essas vantagens, esta pesquisa abre o caminho para desenvolver redes neurais quânticas que podem demonstrar uma vantagem quântica prática já na era quântica atual.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoNETO, Fernando Maciano de Paulahttp://lattes.cnpq.br/5860309471004753http://lattes.cnpq.br/9643216021359436CARVALHO, Jonathan Henrique Andrade de2023-03-24T17:38:12Z2023-03-24T17:38:12Z2022-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCARVALHO, Jonathan Henrique Andrade de. Parametrized constant-depth quantum neuron: framework, conception, and applications. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/49490enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-03-25T05:17:21Zoai:repositorio.ufpe.br:123456789/49490Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-03-25T05:17:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Parametrized constant-depth quantum neuron : framework, conception, and applications
title Parametrized constant-depth quantum neuron : framework, conception, and applications
spellingShingle Parametrized constant-depth quantum neuron : framework, conception, and applications
CARVALHO, Jonathan Henrique Andrade de
Inteligência computacional
Quantum computing
Quantum neuron
Kernel machine
Constant-depth quantum circuit
title_short Parametrized constant-depth quantum neuron : framework, conception, and applications
title_full Parametrized constant-depth quantum neuron : framework, conception, and applications
title_fullStr Parametrized constant-depth quantum neuron : framework, conception, and applications
title_full_unstemmed Parametrized constant-depth quantum neuron : framework, conception, and applications
title_sort Parametrized constant-depth quantum neuron : framework, conception, and applications
author CARVALHO, Jonathan Henrique Andrade de
author_facet CARVALHO, Jonathan Henrique Andrade de
author_role author
dc.contributor.none.fl_str_mv NETO, Fernando Maciano de Paula
http://lattes.cnpq.br/5860309471004753
http://lattes.cnpq.br/9643216021359436
dc.contributor.author.fl_str_mv CARVALHO, Jonathan Henrique Andrade de
dc.subject.por.fl_str_mv Inteligência computacional
Quantum computing
Quantum neuron
Kernel machine
Constant-depth quantum circuit
topic Inteligência computacional
Quantum computing
Quantum neuron
Kernel machine
Constant-depth quantum circuit
description Quantum computing has been revolutionizing the development of algorithms, which in- cludes remarkable advances in artificial neural networks. The exploration of inherently quantum phenomena holds the promise of transcending classical computing. However, only noisy intermediate-scale quantum devices are available currently. To demonstrate advantages in this quantum era, the development of quantum algorithms needs to satisfy several software requirements due to the insufficiency of quantum computing resources. In this research, we propose a kernel-based framework of quantum neurons that not only contemplates existing quantum neurons but also makes room to define countless others, including quantum neurons that comply with the present hardware restrictions. For exam- ple, we propose here a quantum neuron that is implemented by a circuit of constant depth with a linear number of elementary single-qubit gates. Existing quantum neurons are im- plemented by exponentially expensive circuits, even using complex multi-qubit gates. We improve the proposed quantum neuron through a parametrization that can change its ac- tivation function shape in order to fit underlying patterns that existing quantum neurons cannot fit. As an initial demonstration, we show the proposed quantum neuron producing optimal solutions for six classification problems that an existing quantum neuron can solve only two of them. After, we benchmark classical and quantum neurons in several classifi- cation problems. As a result, in the majority of the cases, the proposed quantum neuron is the best over all neurons, which solidly confirms its superiority. The parametrization offers flexibility to not only fit a wide range of problems but also to optimize the margin between classes, at least better than the classical neurons and existing quantum ones. In light of those advantages, this research paves the way to develop quantum neural networks that can demonstrate a practical quantum advantage in the current quantum era already.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-11
2023-03-24T17:38:12Z
2023-03-24T17:38:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CARVALHO, Jonathan Henrique Andrade de. Parametrized constant-depth quantum neuron: framework, conception, and applications. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
https://repositorio.ufpe.br/handle/123456789/49490
identifier_str_mv CARVALHO, Jonathan Henrique Andrade de. Parametrized constant-depth quantum neuron: framework, conception, and applications. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
url https://repositorio.ufpe.br/handle/123456789/49490
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041918154145792