Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso embargado |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/62451 |
Resumo: | With the advancement of information technology, data volume is rapidly increasing, po- sing significant challenges for storage and processing. This growth occurs both in the number of samples and in the number of features, making initial exploratory small data analysis crucial to reducing computational demands and improving data quality for ma- chine learning (ML) training. However, simply reducing the number of samples can in- tensify the “curse of dimensionality,” complicating analysis when a small dataset contains many features. Dimensionality reduction techniques are therefore essential for enabling more efficient and interpretable analyses. Unlike methods such as PCA, which transform the original data, unsupervised feature selection techniques identify the most relevant va- riables without requiring labels, enhancing the interpretability of natural data patterns. However, patterns may emerge only within specific feature subsets, known as subspaces. In some cases, the original features may not be sufficient, requiring the generation of new ones to identify these subspaces. This research explores two strategies for handling high- dimensional data with few samples: (i) a novel unsupervised feature selection method and (ii) a clustering approach based on subspaces. Experiments on real and synthetic datasets showed that the proposed methods outperform state-of-the-art approaches, as evidenced by clustering evaluation metrics and statistical tests. |
| id |
UFPE_e3aed5f6351bbb0b5c020687f4596456 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/62451 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster AnalysisSmall Data AnalysisUnsupervised feature selectionSubspace clustering.With the advancement of information technology, data volume is rapidly increasing, po- sing significant challenges for storage and processing. This growth occurs both in the number of samples and in the number of features, making initial exploratory small data analysis crucial to reducing computational demands and improving data quality for ma- chine learning (ML) training. However, simply reducing the number of samples can in- tensify the “curse of dimensionality,” complicating analysis when a small dataset contains many features. Dimensionality reduction techniques are therefore essential for enabling more efficient and interpretable analyses. Unlike methods such as PCA, which transform the original data, unsupervised feature selection techniques identify the most relevant va- riables without requiring labels, enhancing the interpretability of natural data patterns. However, patterns may emerge only within specific feature subsets, known as subspaces. In some cases, the original features may not be sufficient, requiring the generation of new ones to identify these subspaces. This research explores two strategies for handling high- dimensional data with few samples: (i) a novel unsupervised feature selection method and (ii) a clustering approach based on subspaces. Experiments on real and synthetic datasets showed that the proposed methods outperform state-of-the-art approaches, as evidenced by clustering evaluation metrics and statistical tests.Com o avanço das tecnologias da informação, o volume de dados cresce rapidamente, au- mentando os desafios de armazenamento e processamento. Esse crescimento ocorre tanto no número de exemplos quanto na quantidade de características, tornando essencial a análise exploratória inicial em small data para reduzir a carga computacional e melhorar a qualidade dos dados no treinamento de algoritmos de aprendizado de máquina (AM). No entanto, a simples redução de exemplos pode acentuar a “maldição da dimensionali- dade”, dificultando a análise quando há um número limitado de exemplos descritos por muitas características. Técnicas de redução de dimensionalidade tornam-se, assim, essen- ciais para viabilizar análises mais eficientes e interpretáveis. Diferente de métodos como PCA, que transformam os dados originais, abordagens não supervisionadas de seleção de características identificam as variáveis mais relevantes sem necessidade de rótulos, favo- recendo a interpretabilidade dos padrões naturais dos dados. Entretanto, padrões podem emergir apenas em subconjuntos específicos de características, os chamados subespaços. Em alguns casos, as características originais podem não ser suficientes, exigindo a gera- ção de novas para identificar esses subespaços. Diante disso, esta pesquisa propõe duas estratégias para lidar com dados de alta dimensionalidade e poucos exemplos: (i) um novo método não supervisionado de seleção de características e (ii) um modelo de agru- pamento baseado em subespaços. Experimentos em conjuntos de dados reais e sintéticos demonstraram que os métodos propostos superam abordagens do estado da arte, conforme evidenciado por métricas de análise de cluster e testes estatísticos.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoQUEIROZ, Sergio Ricardo de MeloCARVALHO, Francisco de Assis Tenório dehttp://lattes.cnpq.br/6137784444858483http://lattes.cnpq.br/9263224550858823http://lattes.cnpq.br/3909162572623711OLIVEIRA, Marcos de Souza2025-04-22T17:43:45Z2025-04-22T17:43:45Z2025-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfOLIVEIRA, Marcos de Souza. Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis. 2024. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2024.https://repositorio.ufpe.br/handle/123456789/62451enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-04-23T05:27:55Zoai:repositorio.ufpe.br:123456789/62451Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-04-23T05:27:55Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis |
| title |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis |
| spellingShingle |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis OLIVEIRA, Marcos de Souza Small Data Analysis Unsupervised feature selection Subspace clustering. |
| title_short |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis |
| title_full |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis |
| title_fullStr |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis |
| title_full_unstemmed |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis |
| title_sort |
Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis |
| author |
OLIVEIRA, Marcos de Souza |
| author_facet |
OLIVEIRA, Marcos de Souza |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
QUEIROZ, Sergio Ricardo de Melo CARVALHO, Francisco de Assis Tenório de http://lattes.cnpq.br/6137784444858483 http://lattes.cnpq.br/9263224550858823 http://lattes.cnpq.br/3909162572623711 |
| dc.contributor.author.fl_str_mv |
OLIVEIRA, Marcos de Souza |
| dc.subject.por.fl_str_mv |
Small Data Analysis Unsupervised feature selection Subspace clustering. |
| topic |
Small Data Analysis Unsupervised feature selection Subspace clustering. |
| description |
With the advancement of information technology, data volume is rapidly increasing, po- sing significant challenges for storage and processing. This growth occurs both in the number of samples and in the number of features, making initial exploratory small data analysis crucial to reducing computational demands and improving data quality for ma- chine learning (ML) training. However, simply reducing the number of samples can in- tensify the “curse of dimensionality,” complicating analysis when a small dataset contains many features. Dimensionality reduction techniques are therefore essential for enabling more efficient and interpretable analyses. Unlike methods such as PCA, which transform the original data, unsupervised feature selection techniques identify the most relevant va- riables without requiring labels, enhancing the interpretability of natural data patterns. However, patterns may emerge only within specific feature subsets, known as subspaces. In some cases, the original features may not be sufficient, requiring the generation of new ones to identify these subspaces. This research explores two strategies for handling high- dimensional data with few samples: (i) a novel unsupervised feature selection method and (ii) a clustering approach based on subspaces. Experiments on real and synthetic datasets showed that the proposed methods outperform state-of-the-art approaches, as evidenced by clustering evaluation metrics and statistical tests. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-22T17:43:45Z 2025-04-22T17:43:45Z 2025-02-03 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
OLIVEIRA, Marcos de Souza. Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis. 2024. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2024. https://repositorio.ufpe.br/handle/123456789/62451 |
| identifier_str_mv |
OLIVEIRA, Marcos de Souza. Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis. 2024. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2024. |
| url |
https://repositorio.ufpe.br/handle/123456789/62451 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041925040144384 |