Exportação concluída — 

A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: ALVES, Filipe Antônio Cumaru Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Civil
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
GLS
Link de acesso: https://repositorio.ufpe.br/handle/123456789/52048
Resumo: The level of detail on modern geological models requires higher resolution grids that may render the simulation of multiphase flow in porous media intractable. Moreover, these models may comprise highly heterogeneous media with phenomena taking place in different scales. The original Multiscale Finite Volume (MsFV) method can tackle such issues by constructing a set of numerical operators that map quantities from the fine-scale domain to a coarser one where the initial problem can be solved at a lower computational cost and the solution mapped back to the original scale. However, the MsFV formulation is limited to k-orthogonal grids since it uses a Two-point Flux Approximation (TPFA) method and employs an algorithm to generate the coarse meshes that is not capable of handling general geometries. The Multiscale Restriction Smoothed-Basis method (MsRSB) improves on the MsFV by introducing a new iterative procedure to find the multiscale operators and modifying the algorithm for the generation of the multiscale geometric entities to accommodate unstructured coarse grids, but is still limited to structured fine grids due to the TPFA discretization. Meanwhile, the Multiscale Control Volume method (MsCV) replaces the TPFA by the Multipoint Flux Approximation with a Diamond stencil (MPFA-D) scheme on the fine-scale while further enhancing the generation of the geometric entities to allow truly unstructured grids on the fine and coarse scales for two-dimensional simulation. In this work we propose an extension to three-dimensional geometries of both the MsCV and the algorithm to obtain the multiscale geometric entities based on the concept of background grid. We modify the MPFA-D to use the very robust Generalised Least Squares (GLS) interpolation technique to obtain the required auxiliary nodal unknowns. Finally, we also introduce an enhanced version of the 3-D MsCV with the incorporation of the enhanced MsRSB (E-MsRSB) to enforce M-matrix properties and improve convergence. We show that the 3-D MsCV method produces good results employing true unstructured grids on both scales to handle the simulation of the single-phase flow in anisotropic and heterogeneous porous media.
id UFPE_e60452bf1b3dd4a4bb262d214bd855fb
oai_identifier_str oai:repositorio.ufpe.br:123456789/52048
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous mediaEngenharia CivilMultiescalaMsCVMPFA-DGLSMalha de fundoEscoamento monofásicoThe level of detail on modern geological models requires higher resolution grids that may render the simulation of multiphase flow in porous media intractable. Moreover, these models may comprise highly heterogeneous media with phenomena taking place in different scales. The original Multiscale Finite Volume (MsFV) method can tackle such issues by constructing a set of numerical operators that map quantities from the fine-scale domain to a coarser one where the initial problem can be solved at a lower computational cost and the solution mapped back to the original scale. However, the MsFV formulation is limited to k-orthogonal grids since it uses a Two-point Flux Approximation (TPFA) method and employs an algorithm to generate the coarse meshes that is not capable of handling general geometries. The Multiscale Restriction Smoothed-Basis method (MsRSB) improves on the MsFV by introducing a new iterative procedure to find the multiscale operators and modifying the algorithm for the generation of the multiscale geometric entities to accommodate unstructured coarse grids, but is still limited to structured fine grids due to the TPFA discretization. Meanwhile, the Multiscale Control Volume method (MsCV) replaces the TPFA by the Multipoint Flux Approximation with a Diamond stencil (MPFA-D) scheme on the fine-scale while further enhancing the generation of the geometric entities to allow truly unstructured grids on the fine and coarse scales for two-dimensional simulation. In this work we propose an extension to three-dimensional geometries of both the MsCV and the algorithm to obtain the multiscale geometric entities based on the concept of background grid. We modify the MPFA-D to use the very robust Generalised Least Squares (GLS) interpolation technique to obtain the required auxiliary nodal unknowns. Finally, we also introduce an enhanced version of the 3-D MsCV with the incorporation of the enhanced MsRSB (E-MsRSB) to enforce M-matrix properties and improve convergence. We show that the 3-D MsCV method produces good results employing true unstructured grids on both scales to handle the simulation of the single-phase flow in anisotropic and heterogeneous porous media.O nível de detalhe nos modelos geológicos modernos demanda o uso de malhas de alta resolução que podem tornar o problema da simulação do escoamento multifásico em meios porosos intratável. Além disso, estes modelos podem conter grande heterogeneidade e fenômenos que ocorrem em diferentes escalas. O Método dos Volumes Finitos Multiescala (MsFV) é capaz de lidar com tais problemas por meio da construção de um conjunto de operadores numéricos que mapeiam grandezas do domínio representado na escala de alta resolução para uma escala de menor resolução onde o problema inicial é resolvido a um custo computacional reduzido e cuja solução pode ser mapeada de volta à escala original. Contudo, a formulação do MsFV é limitada a malhas k-ortogonais devido ao uso do esquema de aproximação do fluxo por dois pontos (TPFA) e ao emprego de algoritmos para geração das malhas de menor resolução que não são capazes de tratar geometrias quaisquer. O método Multiscale Restriction Smoothed-Basis (MsRSB) melhora o MsFV introduzindo um novo procedimento iterativo para calcular os operadores multiescala e modificando o algoritmo de geração das entidades geométricas do multiescala para acomodar malhas de baixa resolução não-estruturadas, mas ainda é limitado ao uso de malhas estruturadas na escala de alta resolução pois mantém a discretização por TPFA. Enquanto isso, o Multiscale Control Volume Method (MsCV) substitui o TPFA pelo esquema Multipoint Flux Appoximation with a Diamond Stencil (MPFA-D) na escala de alta resolução e aprimora o procedimento para geração das entidades geométricas para permitir que malhas verdadeiramente não-estruturadas sejam usadas nas escalas de alta e baixa resolução para simulação numérica em duas dimensões. Neste trabalho, nós propomos uma extensão para geometrias tridimensionais do MsCV e do algoritmo para geração das entidades geométricas do multiescala baseado no conceito de malha de fundo. Nós também modificamos o MPFA-D para que seja usado o robusto método de interpolação das variáveis nodais Global Least Squares (GLS). Finalmente, introduzimos uma melhoria ao MsCV 3-D com a incorporação do método Enhanced MsRSB (E-MsRSB) para impor propriedades de uma matriz M à matriz MPFA-D e melhorar a convergência do método. Nós mostramos que o método MsCV 3-D produz bons resultados com o uso de malhas verdadeiramente não-estruturadas nas duas escalas para tratar a simulação do escoamento monofásico em meios porosos anisotrópicos e heterogêneos.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia CivilLYRA, Paulo Roberto MacielCARVALHO, Darlan Karlo Elisiário dehttp://lattes.cnpq.br/0957645094389182http://lattes.cnpq.br/6568615406054840http://lattes.cnpq.br/9033828541812842ALVES, Filipe Antônio Cumaru Silva2023-08-23T18:20:31Z2023-08-23T18:20:31Z2023-07-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfALVES, Filipe Antônio Cumaru Silva. A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media. 2023. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/52048engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-08-24T05:14:21Zoai:repositorio.ufpe.br:123456789/52048Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-08-24T05:14:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media
title A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media
spellingShingle A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media
ALVES, Filipe Antônio Cumaru Silva
Engenharia Civil
Multiescala
MsCV
MPFA-D
GLS
Malha de fundo
Escoamento monofásico
title_short A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media
title_full A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media
title_fullStr A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media
title_full_unstemmed A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media
title_sort A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media
author ALVES, Filipe Antônio Cumaru Silva
author_facet ALVES, Filipe Antônio Cumaru Silva
author_role author
dc.contributor.none.fl_str_mv LYRA, Paulo Roberto Maciel
CARVALHO, Darlan Karlo Elisiário de
http://lattes.cnpq.br/0957645094389182
http://lattes.cnpq.br/6568615406054840
http://lattes.cnpq.br/9033828541812842
dc.contributor.author.fl_str_mv ALVES, Filipe Antônio Cumaru Silva
dc.subject.por.fl_str_mv Engenharia Civil
Multiescala
MsCV
MPFA-D
GLS
Malha de fundo
Escoamento monofásico
topic Engenharia Civil
Multiescala
MsCV
MPFA-D
GLS
Malha de fundo
Escoamento monofásico
description The level of detail on modern geological models requires higher resolution grids that may render the simulation of multiphase flow in porous media intractable. Moreover, these models may comprise highly heterogeneous media with phenomena taking place in different scales. The original Multiscale Finite Volume (MsFV) method can tackle such issues by constructing a set of numerical operators that map quantities from the fine-scale domain to a coarser one where the initial problem can be solved at a lower computational cost and the solution mapped back to the original scale. However, the MsFV formulation is limited to k-orthogonal grids since it uses a Two-point Flux Approximation (TPFA) method and employs an algorithm to generate the coarse meshes that is not capable of handling general geometries. The Multiscale Restriction Smoothed-Basis method (MsRSB) improves on the MsFV by introducing a new iterative procedure to find the multiscale operators and modifying the algorithm for the generation of the multiscale geometric entities to accommodate unstructured coarse grids, but is still limited to structured fine grids due to the TPFA discretization. Meanwhile, the Multiscale Control Volume method (MsCV) replaces the TPFA by the Multipoint Flux Approximation with a Diamond stencil (MPFA-D) scheme on the fine-scale while further enhancing the generation of the geometric entities to allow truly unstructured grids on the fine and coarse scales for two-dimensional simulation. In this work we propose an extension to three-dimensional geometries of both the MsCV and the algorithm to obtain the multiscale geometric entities based on the concept of background grid. We modify the MPFA-D to use the very robust Generalised Least Squares (GLS) interpolation technique to obtain the required auxiliary nodal unknowns. Finally, we also introduce an enhanced version of the 3-D MsCV with the incorporation of the enhanced MsRSB (E-MsRSB) to enforce M-matrix properties and improve convergence. We show that the 3-D MsCV method produces good results employing true unstructured grids on both scales to handle the simulation of the single-phase flow in anisotropic and heterogeneous porous media.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-23T18:20:31Z
2023-08-23T18:20:31Z
2023-07-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ALVES, Filipe Antônio Cumaru Silva. A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media. 2023. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023.
https://repositorio.ufpe.br/handle/123456789/52048
identifier_str_mv ALVES, Filipe Antônio Cumaru Silva. A Multiscale Control Volume framework using 3D unstructured grids for the simulation of single phase flow in anisotropic and heterogeneous porous media. 2023. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2023.
url https://repositorio.ufpe.br/handle/123456789/52048
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Civil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Civil
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042090943741952