Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: ALMEIDA, Henrique Alexandre de Menezes Sabino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11507
Resumo: Em aprendizagem de máquina, uma das dificuldades mais recorrentes é a escolha do classificador que melhor resolve um determinado problema. Devido a isso, muitos estudos mostraram que problemas de classificação têm maiores taxas de acerto quando classificadores são combinados ao invés de apenas um classificador individual. A Seleção Dinâmica é uma estratégia para a combinação de múltiplos classificadores que usa a região de competência, no qual acredita-se que um subconjunto de classificadores seja mais competente para classificar um dado padrão de consulta. A abordagem tradicional de seleção dinâmica é composta por três fases: Superprodução, Região de Competência e Seleção Dinâmica. Vários métodos têm sidos propostos na fase de Superprodução, responsável pela geração de classificadores, e na fase de Seleção Dinâmica, responsável pela heurística de seleção, porém pouco foi estudado sobre a fase de Região de Competência. A fase de Região de Competência é responsável pela seleção dos padrões vizinhos do padrão de consulta, e é a principal informação para a seleção dos classificadores através da heurística de seleção. Devido à importância da região de competência, este trabalho propõe uma abordagem para seleção dinâmica que visa melhorar a definição da região de competência, tendo como hipótese que uma melhor definição dessa região resulta em um melhor desempenho de seleção dinâmica. Isso é realizado através de duas técnicas: filtragem de instâncias e distância adaptativa. Essas técnicas têm como finalidade a redução de padrões indesejáveis, e portanto são responsáveis por melhorar a qualidade da região de competência. Os experimentos foram realizados em 17 bases de dados utilizando 6 métodos diferentes de seleção dinâmica de classificadores. Os resultados mostraram que a abordagem proposta melhorou a taxa de acerto da seleção dinâmica, em relação a abordagem tradicional, em 10 bases com diferenças estatisticamente significativas, e em 5 dos 6 métodos de seleção dinâmica. No trabalho, também foi analisada a influência dos componentes do sistema de seleção dinâmica, e as descrições das bases de dados que influenciam a diferença dos resultados entre a abordagem proposta e a abordagem tradicional. Os resultados dessas análises mostraram que o método de seleção dinâmica e o classificador base são os componentes do sistema de seleção dinâmica que melhor determinam a taxa de acerto, e que o número de dimensões e o número de classes são os fatores que mais contribuem para a diferença de resultados entre as abordagens, proposta e tradicional.
id UFPE_e98a350efa138ca6669b9133bc79d997
oai_identifier_str oai:repositorio.ufpe.br:123456789/11507
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativaCombinação de ClassificadoresRegião de CompetênciaSeleção Dinâmica de ClassificadoresEm aprendizagem de máquina, uma das dificuldades mais recorrentes é a escolha do classificador que melhor resolve um determinado problema. Devido a isso, muitos estudos mostraram que problemas de classificação têm maiores taxas de acerto quando classificadores são combinados ao invés de apenas um classificador individual. A Seleção Dinâmica é uma estratégia para a combinação de múltiplos classificadores que usa a região de competência, no qual acredita-se que um subconjunto de classificadores seja mais competente para classificar um dado padrão de consulta. A abordagem tradicional de seleção dinâmica é composta por três fases: Superprodução, Região de Competência e Seleção Dinâmica. Vários métodos têm sidos propostos na fase de Superprodução, responsável pela geração de classificadores, e na fase de Seleção Dinâmica, responsável pela heurística de seleção, porém pouco foi estudado sobre a fase de Região de Competência. A fase de Região de Competência é responsável pela seleção dos padrões vizinhos do padrão de consulta, e é a principal informação para a seleção dos classificadores através da heurística de seleção. Devido à importância da região de competência, este trabalho propõe uma abordagem para seleção dinâmica que visa melhorar a definição da região de competência, tendo como hipótese que uma melhor definição dessa região resulta em um melhor desempenho de seleção dinâmica. Isso é realizado através de duas técnicas: filtragem de instâncias e distância adaptativa. Essas técnicas têm como finalidade a redução de padrões indesejáveis, e portanto são responsáveis por melhorar a qualidade da região de competência. Os experimentos foram realizados em 17 bases de dados utilizando 6 métodos diferentes de seleção dinâmica de classificadores. Os resultados mostraram que a abordagem proposta melhorou a taxa de acerto da seleção dinâmica, em relação a abordagem tradicional, em 10 bases com diferenças estatisticamente significativas, e em 5 dos 6 métodos de seleção dinâmica. No trabalho, também foi analisada a influência dos componentes do sistema de seleção dinâmica, e as descrições das bases de dados que influenciam a diferença dos resultados entre a abordagem proposta e a abordagem tradicional. Os resultados dessas análises mostraram que o método de seleção dinâmica e o classificador base são os componentes do sistema de seleção dinâmica que melhor determinam a taxa de acerto, e que o número de dimensões e o número de classes são os fatores que mais contribuem para a diferença de resultados entre as abordagens, proposta e tradicional.Universidade Federal de PernambucoCAVALCANTI, George Darmiton da CunhaREN, Tsang IngALMEIDA, Henrique Alexandre de Menezes Sabino2015-03-09T14:50:57Z2015-03-09T14:50:57Z2014-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/11507porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T08:55:41Zoai:repositorio.ufpe.br:123456789/11507Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T08:55:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa
title Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa
spellingShingle Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa
ALMEIDA, Henrique Alexandre de Menezes Sabino
Combinação de Classificadores
Região de Competência
Seleção Dinâmica de Classificadores
title_short Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa
title_full Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa
title_fullStr Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa
title_full_unstemmed Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa
title_sort Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa
author ALMEIDA, Henrique Alexandre de Menezes Sabino
author_facet ALMEIDA, Henrique Alexandre de Menezes Sabino
author_role author
dc.contributor.none.fl_str_mv CAVALCANTI, George Darmiton da Cunha
REN, Tsang Ing
dc.contributor.author.fl_str_mv ALMEIDA, Henrique Alexandre de Menezes Sabino
dc.subject.por.fl_str_mv Combinação de Classificadores
Região de Competência
Seleção Dinâmica de Classificadores
topic Combinação de Classificadores
Região de Competência
Seleção Dinâmica de Classificadores
description Em aprendizagem de máquina, uma das dificuldades mais recorrentes é a escolha do classificador que melhor resolve um determinado problema. Devido a isso, muitos estudos mostraram que problemas de classificação têm maiores taxas de acerto quando classificadores são combinados ao invés de apenas um classificador individual. A Seleção Dinâmica é uma estratégia para a combinação de múltiplos classificadores que usa a região de competência, no qual acredita-se que um subconjunto de classificadores seja mais competente para classificar um dado padrão de consulta. A abordagem tradicional de seleção dinâmica é composta por três fases: Superprodução, Região de Competência e Seleção Dinâmica. Vários métodos têm sidos propostos na fase de Superprodução, responsável pela geração de classificadores, e na fase de Seleção Dinâmica, responsável pela heurística de seleção, porém pouco foi estudado sobre a fase de Região de Competência. A fase de Região de Competência é responsável pela seleção dos padrões vizinhos do padrão de consulta, e é a principal informação para a seleção dos classificadores através da heurística de seleção. Devido à importância da região de competência, este trabalho propõe uma abordagem para seleção dinâmica que visa melhorar a definição da região de competência, tendo como hipótese que uma melhor definição dessa região resulta em um melhor desempenho de seleção dinâmica. Isso é realizado através de duas técnicas: filtragem de instâncias e distância adaptativa. Essas técnicas têm como finalidade a redução de padrões indesejáveis, e portanto são responsáveis por melhorar a qualidade da região de competência. Os experimentos foram realizados em 17 bases de dados utilizando 6 métodos diferentes de seleção dinâmica de classificadores. Os resultados mostraram que a abordagem proposta melhorou a taxa de acerto da seleção dinâmica, em relação a abordagem tradicional, em 10 bases com diferenças estatisticamente significativas, e em 5 dos 6 métodos de seleção dinâmica. No trabalho, também foi analisada a influência dos componentes do sistema de seleção dinâmica, e as descrições das bases de dados que influenciam a diferença dos resultados entre a abordagem proposta e a abordagem tradicional. Os resultados dessas análises mostraram que o método de seleção dinâmica e o classificador base são os componentes do sistema de seleção dinâmica que melhor determinam a taxa de acerto, e que o número de dimensões e o número de classes são os fatores que mais contribuem para a diferença de resultados entre as abordagens, proposta e tradicional.
publishDate 2014
dc.date.none.fl_str_mv 2014-08-15
2015-03-09T14:50:57Z
2015-03-09T14:50:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/11507
url https://repositorio.ufpe.br/handle/123456789/11507
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041965281345536