ARCA - Alerts root cause analysis framework

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Melo, Daniel Araújo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/13946
Resumo: Modern virtual plagues, or malwares, have focused on internal host infection and em-ploy evasive techniques to conceal itself from antivirus systems and users. Traditional network security mechanisms, such as Firewalls, IDS (Intrusion Detection Systems) and Antivirus Systems, have lost efficiency when fighting malware propagation. Recent researches present alternatives to detect malicious traffic and malware propagation through traffic analysis, however, the presented results are based on experiments with biased artificial traffic or traffic too specific to generalize, do not consider the existence of background traffic related with local network services or demands previous knowledge of networks infrastructure. Specifically don’t consider a well-known intru-sion detection systems problem, the high false positive rate which may be responsible for 99% of total alerts. This dissertation proposes a framework (ARCA – Alerts Root Cause Analysis) capable of guide a security engineer, or system administrator, to iden-tify alerts root causes, malicious or not, and allow the identification of malicious traffic and false positives. Moreover, describes modern malwares propagation mechanisms, presents methods to detect malwares through analysis of IDS alerts and false positives reduction. ARCA combines an aggregation method based on Relative Uncertainty with Apriori, a frequent itemset mining algorithm. Tests with 2 real datasets show an 88% reduction in the amount of alerts to be analyzed without previous knowledge of network infrastructure.
id UFPE_ecce98bd2c940001fd34af278db6c0c1
oai_identifier_str oai:repositorio.ufpe.br:123456789/13946
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling ARCA - Alerts root cause analysis frameworkIntrusion detectionMalwareAlerts correlationAdvanced persis-tent threatsModern virtual plagues, or malwares, have focused on internal host infection and em-ploy evasive techniques to conceal itself from antivirus systems and users. Traditional network security mechanisms, such as Firewalls, IDS (Intrusion Detection Systems) and Antivirus Systems, have lost efficiency when fighting malware propagation. Recent researches present alternatives to detect malicious traffic and malware propagation through traffic analysis, however, the presented results are based on experiments with biased artificial traffic or traffic too specific to generalize, do not consider the existence of background traffic related with local network services or demands previous knowledge of networks infrastructure. Specifically don’t consider a well-known intru-sion detection systems problem, the high false positive rate which may be responsible for 99% of total alerts. This dissertation proposes a framework (ARCA – Alerts Root Cause Analysis) capable of guide a security engineer, or system administrator, to iden-tify alerts root causes, malicious or not, and allow the identification of malicious traffic and false positives. Moreover, describes modern malwares propagation mechanisms, presents methods to detect malwares through analysis of IDS alerts and false positives reduction. ARCA combines an aggregation method based on Relative Uncertainty with Apriori, a frequent itemset mining algorithm. Tests with 2 real datasets show an 88% reduction in the amount of alerts to be analyzed without previous knowledge of network infrastructure.Universidade Federal de PernambucoSadok, Djamel Fawzi HadjMelo, Daniel Araújo2015-05-15T14:58:14Z2015-05-15T14:58:14Z2014-09-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/13946engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T21:56:26Zoai:repositorio.ufpe.br:123456789/13946Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T21:56:26Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv ARCA - Alerts root cause analysis framework
title ARCA - Alerts root cause analysis framework
spellingShingle ARCA - Alerts root cause analysis framework
Melo, Daniel Araújo
Intrusion detection
Malware
Alerts correlation
Advanced persis-tent threats
title_short ARCA - Alerts root cause analysis framework
title_full ARCA - Alerts root cause analysis framework
title_fullStr ARCA - Alerts root cause analysis framework
title_full_unstemmed ARCA - Alerts root cause analysis framework
title_sort ARCA - Alerts root cause analysis framework
author Melo, Daniel Araújo
author_facet Melo, Daniel Araújo
author_role author
dc.contributor.none.fl_str_mv Sadok, Djamel Fawzi Hadj
dc.contributor.author.fl_str_mv Melo, Daniel Araújo
dc.subject.por.fl_str_mv Intrusion detection
Malware
Alerts correlation
Advanced persis-tent threats
topic Intrusion detection
Malware
Alerts correlation
Advanced persis-tent threats
description Modern virtual plagues, or malwares, have focused on internal host infection and em-ploy evasive techniques to conceal itself from antivirus systems and users. Traditional network security mechanisms, such as Firewalls, IDS (Intrusion Detection Systems) and Antivirus Systems, have lost efficiency when fighting malware propagation. Recent researches present alternatives to detect malicious traffic and malware propagation through traffic analysis, however, the presented results are based on experiments with biased artificial traffic or traffic too specific to generalize, do not consider the existence of background traffic related with local network services or demands previous knowledge of networks infrastructure. Specifically don’t consider a well-known intru-sion detection systems problem, the high false positive rate which may be responsible for 99% of total alerts. This dissertation proposes a framework (ARCA – Alerts Root Cause Analysis) capable of guide a security engineer, or system administrator, to iden-tify alerts root causes, malicious or not, and allow the identification of malicious traffic and false positives. Moreover, describes modern malwares propagation mechanisms, presents methods to detect malwares through analysis of IDS alerts and false positives reduction. ARCA combines an aggregation method based on Relative Uncertainty with Apriori, a frequent itemset mining algorithm. Tests with 2 real datasets show an 88% reduction in the amount of alerts to be analyzed without previous knowledge of network infrastructure.
publishDate 2014
dc.date.none.fl_str_mv 2014-09-08
2015-05-15T14:58:14Z
2015-05-15T14:58:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/13946
url https://repositorio.ufpe.br/handle/123456789/13946
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041858454519808