Recommender systems for manual testing

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: MIRANDA, Breno Alexandro Ferreira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2654
Resumo: A atividade de teste de software pode ser bastante árdua e custosa. No contexto de testes manuais, todo o esforço com o objetivo de reduzir o tempo de execução dos testes e aumentar a contenção de defeitos é bem-vindo. Uma possível estratégia é alocar os casos de teste de acordo com o perfil do testador de forma a maximizar a produtividade. Entretanto, otimizar a alocação de casos de teste não é uma tarefa trivial: em grandes companhias, gerentes de teste são responsáveis por alocar centenas de casos de teste aos testadores disponíveis ao início de uma nova execução. Neste trabalho nós propomos dois algoritmos para a alocação automática de casos de teste e três perfis para os testadores baseados em sistemas de recomendação (o mesmo tipo de sistema que recomenda, por exemplo, um livro na Amazon.com ou um filme no Netflix.com). Cada um dos algoritmos de alocação pode ser combinado com os três perfis de testador, resultando em seis sistemas de alocação possíveis: Exp-Manager, Exp-Blind, MO-Manager, MO-Blind, Eff-Manager, e Eff-Blind. Nossos sistemas de alocação consideram a efetividade (defeitos válidos encontrados no passado) e experiência do testador (habilidade em executar testes com determinadas características). Com o objetivo de comparar os nossos sistemas de alocação com a alocação do gerente e com alocações aleatórias, um experimento controlado, utilizando 100 alocações com pelo menos 50 casos de teste cada uma, foi realizado em um cenário industrial real. Os sistemas de alocação foram avaliados através das métricas de precisão, recall e taxa de não-alocação (percentual de casos de teste não alocados). Em nosso experimento, a aplicação da ANOVA (uma técnica estatística utilizada para verificar se as amostras de dois ou mais grupos são oriundas de populações com médias iguais) e do teste de Tukey (um procedimento de comparações múltiplas para identificar quais médias são significativamente diferentes entre si) mostraram que o Exp-Manager supera os demais sistemas de alocação com respeito às métricas de precisão e recall. Todos os sistemas de alocação mostraram-se superiores ao algoritmo randômico. A precisão média (entre os sistemas de alocação) variou de 39.32% a 64.83% enquanto o recall médio variou de 39.19% a 64.83%; para a métrica de não-alocação, três sistemas de alocação (Exp-Manager, Exp-Blind e MOBlind) apresentaram um melhor desempenho alcançando taxa zero de não-alocação para todas as alocações de testes. A taxa média de não-alocação variou de 0% a 2.34% (para a métrica não-alocação, quanto menor, melhor). No cenário industrial real onde o nosso trabalho foi realizado, gerentes de teste gastam de 16 a 30 dias de trabalho por ano com a atividade de alocação de casos de teste. Nossos sistemas de alocação podem ajudá-los a realizar esta atividade de forma mais rápida e mais eficaz
id UFPE_f292020c32832eea087f5f579a96f9c0
oai_identifier_str oai:repositorio.ufpe.br:123456789/2654
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Recommender systems for manual testingSoftware TestingRecommender SystemsManual TestingTest AllocationA atividade de teste de software pode ser bastante árdua e custosa. No contexto de testes manuais, todo o esforço com o objetivo de reduzir o tempo de execução dos testes e aumentar a contenção de defeitos é bem-vindo. Uma possível estratégia é alocar os casos de teste de acordo com o perfil do testador de forma a maximizar a produtividade. Entretanto, otimizar a alocação de casos de teste não é uma tarefa trivial: em grandes companhias, gerentes de teste são responsáveis por alocar centenas de casos de teste aos testadores disponíveis ao início de uma nova execução. Neste trabalho nós propomos dois algoritmos para a alocação automática de casos de teste e três perfis para os testadores baseados em sistemas de recomendação (o mesmo tipo de sistema que recomenda, por exemplo, um livro na Amazon.com ou um filme no Netflix.com). Cada um dos algoritmos de alocação pode ser combinado com os três perfis de testador, resultando em seis sistemas de alocação possíveis: Exp-Manager, Exp-Blind, MO-Manager, MO-Blind, Eff-Manager, e Eff-Blind. Nossos sistemas de alocação consideram a efetividade (defeitos válidos encontrados no passado) e experiência do testador (habilidade em executar testes com determinadas características). Com o objetivo de comparar os nossos sistemas de alocação com a alocação do gerente e com alocações aleatórias, um experimento controlado, utilizando 100 alocações com pelo menos 50 casos de teste cada uma, foi realizado em um cenário industrial real. Os sistemas de alocação foram avaliados através das métricas de precisão, recall e taxa de não-alocação (percentual de casos de teste não alocados). Em nosso experimento, a aplicação da ANOVA (uma técnica estatística utilizada para verificar se as amostras de dois ou mais grupos são oriundas de populações com médias iguais) e do teste de Tukey (um procedimento de comparações múltiplas para identificar quais médias são significativamente diferentes entre si) mostraram que o Exp-Manager supera os demais sistemas de alocação com respeito às métricas de precisão e recall. Todos os sistemas de alocação mostraram-se superiores ao algoritmo randômico. A precisão média (entre os sistemas de alocação) variou de 39.32% a 64.83% enquanto o recall médio variou de 39.19% a 64.83%; para a métrica de não-alocação, três sistemas de alocação (Exp-Manager, Exp-Blind e MOBlind) apresentaram um melhor desempenho alcançando taxa zero de não-alocação para todas as alocações de testes. A taxa média de não-alocação variou de 0% a 2.34% (para a métrica não-alocação, quanto menor, melhor). No cenário industrial real onde o nosso trabalho foi realizado, gerentes de teste gastam de 16 a 30 dias de trabalho por ano com a atividade de alocação de casos de teste. Nossos sistemas de alocação podem ajudá-los a realizar esta atividade de forma mais rápida e mais eficazUniversidade Federal de PernambucoIYODA, Juliano ManabuMIRANDA, Breno Alexandro Ferreira de2014-06-12T15:59:57Z2014-06-12T15:59:57Z2011-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfAlexandro Ferreira de Miranda, Breno; Manabu Iyoda, Juliano. Recommender systems for manual testing. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/2654engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T08:25:53Zoai:repositorio.ufpe.br:123456789/2654Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T08:25:53Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Recommender systems for manual testing
title Recommender systems for manual testing
spellingShingle Recommender systems for manual testing
MIRANDA, Breno Alexandro Ferreira de
Software Testing
Recommender Systems
Manual Testing
Test Allocation
title_short Recommender systems for manual testing
title_full Recommender systems for manual testing
title_fullStr Recommender systems for manual testing
title_full_unstemmed Recommender systems for manual testing
title_sort Recommender systems for manual testing
author MIRANDA, Breno Alexandro Ferreira de
author_facet MIRANDA, Breno Alexandro Ferreira de
author_role author
dc.contributor.none.fl_str_mv IYODA, Juliano Manabu
dc.contributor.author.fl_str_mv MIRANDA, Breno Alexandro Ferreira de
dc.subject.por.fl_str_mv Software Testing
Recommender Systems
Manual Testing
Test Allocation
topic Software Testing
Recommender Systems
Manual Testing
Test Allocation
description A atividade de teste de software pode ser bastante árdua e custosa. No contexto de testes manuais, todo o esforço com o objetivo de reduzir o tempo de execução dos testes e aumentar a contenção de defeitos é bem-vindo. Uma possível estratégia é alocar os casos de teste de acordo com o perfil do testador de forma a maximizar a produtividade. Entretanto, otimizar a alocação de casos de teste não é uma tarefa trivial: em grandes companhias, gerentes de teste são responsáveis por alocar centenas de casos de teste aos testadores disponíveis ao início de uma nova execução. Neste trabalho nós propomos dois algoritmos para a alocação automática de casos de teste e três perfis para os testadores baseados em sistemas de recomendação (o mesmo tipo de sistema que recomenda, por exemplo, um livro na Amazon.com ou um filme no Netflix.com). Cada um dos algoritmos de alocação pode ser combinado com os três perfis de testador, resultando em seis sistemas de alocação possíveis: Exp-Manager, Exp-Blind, MO-Manager, MO-Blind, Eff-Manager, e Eff-Blind. Nossos sistemas de alocação consideram a efetividade (defeitos válidos encontrados no passado) e experiência do testador (habilidade em executar testes com determinadas características). Com o objetivo de comparar os nossos sistemas de alocação com a alocação do gerente e com alocações aleatórias, um experimento controlado, utilizando 100 alocações com pelo menos 50 casos de teste cada uma, foi realizado em um cenário industrial real. Os sistemas de alocação foram avaliados através das métricas de precisão, recall e taxa de não-alocação (percentual de casos de teste não alocados). Em nosso experimento, a aplicação da ANOVA (uma técnica estatística utilizada para verificar se as amostras de dois ou mais grupos são oriundas de populações com médias iguais) e do teste de Tukey (um procedimento de comparações múltiplas para identificar quais médias são significativamente diferentes entre si) mostraram que o Exp-Manager supera os demais sistemas de alocação com respeito às métricas de precisão e recall. Todos os sistemas de alocação mostraram-se superiores ao algoritmo randômico. A precisão média (entre os sistemas de alocação) variou de 39.32% a 64.83% enquanto o recall médio variou de 39.19% a 64.83%; para a métrica de não-alocação, três sistemas de alocação (Exp-Manager, Exp-Blind e MOBlind) apresentaram um melhor desempenho alcançando taxa zero de não-alocação para todas as alocações de testes. A taxa média de não-alocação variou de 0% a 2.34% (para a métrica não-alocação, quanto menor, melhor). No cenário industrial real onde o nosso trabalho foi realizado, gerentes de teste gastam de 16 a 30 dias de trabalho por ano com a atividade de alocação de casos de teste. Nossos sistemas de alocação podem ajudá-los a realizar esta atividade de forma mais rápida e mais eficaz
publishDate 2011
dc.date.none.fl_str_mv 2011-01-31
2014-06-12T15:59:57Z
2014-06-12T15:59:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Alexandro Ferreira de Miranda, Breno; Manabu Iyoda, Juliano. Recommender systems for manual testing. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.
https://repositorio.ufpe.br/handle/123456789/2654
identifier_str_mv Alexandro Ferreira de Miranda, Breno; Manabu Iyoda, Juliano. Recommender systems for manual testing. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.
url https://repositorio.ufpe.br/handle/123456789/2654
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041845131313152