Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: BIBIANO FILHO, Anderson de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Fisica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/49649
Resumo: At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width.
id UFPE_f4e259b9b462d1158dfc79b1b6a683e3
oai_identifier_str oai:repositorio.ufpe.br:123456789/49649
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic fieldFísica da matéria condensada e de materiaisTransições de fase quânticaModelo do Hamiltoniano de HeisenbergAt zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width.CAPESEm temperatura zero, flutuação térmica é eliminada e transições de fase irão ocorrer devido à flutuações que surgem do princípio da incerteza de Heisenberg. Isolantes magnéticos, descritos pelo modelo do Hamiltoniano de Heisenberg, são uma conhecida classe de sistemas que podem ser submetidos a transições de fase quântica quando expostos a um campo magnético. O campo magnético induz a transição fechando gaps de energia através do efeito Zeeman. Exemplos de sistemas que passam por essas transições são a cadeia antiferromagnética de spin-1, a cadeia escada antiferromagnética de spin- 1/2, a cadeia ferrimagnética e a cadeia escada ferrimagnética de spin misturado com spin-1 e spin- 1/2. A presença do gap no espectro de energia com campo magnético zero leva a um plateau de magnetização na curva de magnetização. Usamos o grupo de renormalização da matriz densidade para investigar curvas de magnetização da cadeia escada de spin misturado com spin-1 e spin- 1/2, para acoplamento antiferromagnético e ferromagnético entre as pernas da escada J⊥. Para J⊥ > 0, o estado fundamental é ferrimagnético com spin total igual a 1/3 do valor de saturação, o 1/3-plateau dado que o estado fundamental possui um gap para excitações que aumentam o spin total em 1 unidade. Diminuindo J⊥ abaixo de zero, o estado fundamental se torna um singleto, mas o 1/3-plateau sobrevive até o valor crítico J⊥ = Jc. Dado que o gap fecha sob magnetização constante, é uma transição do tipo Kosterlitz-Thouless. Para determinar Jc, fizemos análise de escala finita da largura do plateau.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em FisicaMONTENEGRO FILHO, Renê Rodrigueshttp://lattes.cnpq.br/3182736828254922http://lattes.cnpq.br/7977378392052504BIBIANO FILHO, Anderson de Souza2023-04-13T12:33:14Z2023-04-13T12:33:14Z2022-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfBIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/49649enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-04-14T05:16:58Zoai:repositorio.ufpe.br:123456789/49649Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-04-14T05:16:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
spellingShingle Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
BIBIANO FILHO, Anderson de Souza
Física da matéria condensada e de materiais
Transições de fase quântica
Modelo do Hamiltoniano de Heisenberg
title_short Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title_full Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title_fullStr Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title_full_unstemmed Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title_sort Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
author BIBIANO FILHO, Anderson de Souza
author_facet BIBIANO FILHO, Anderson de Souza
author_role author
dc.contributor.none.fl_str_mv MONTENEGRO FILHO, Renê Rodrigues
http://lattes.cnpq.br/3182736828254922
http://lattes.cnpq.br/7977378392052504
dc.contributor.author.fl_str_mv BIBIANO FILHO, Anderson de Souza
dc.subject.por.fl_str_mv Física da matéria condensada e de materiais
Transições de fase quântica
Modelo do Hamiltoniano de Heisenberg
topic Física da matéria condensada e de materiais
Transições de fase quântica
Modelo do Hamiltoniano de Heisenberg
description At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-20
2023-04-13T12:33:14Z
2023-04-13T12:33:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022.
https://repositorio.ufpe.br/handle/123456789/49649
identifier_str_mv BIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022.
url https://repositorio.ufpe.br/handle/123456789/49649
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Fisica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Fisica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041936602791936