Variants of the Fast Adaptive Stacking of Ensembles algorithm

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: MARIÑO, Laura María Palomino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/36042
Resumo: The treatment of large data streams in the presence of concept drifts is one of the main challenges in the fields of machine learning and data mining. This dissertation presents two families of ensemble algorithms designed to quickly adapt to concept drifts, both abrupt and gradual. The families Fast Stacking of Ensembles boosting the Old (FASEO) and Fast Stacking of Ensembles boosting the Best (FASEB) are adaptations of the Fast Adaptive Stacking of Ensembles (FASE) algorithm, designed to improve run-time and memory requirements, without presenting a significant decrease in terms of accuracy when compared to the original FASE. In order to achieve a more efficient model, adjustments were made in the update strategy and voting procedure of the ensemble. To evaluate the proposals against state of the art methods, Naïve Bayes (NB) and Hoeffding Tree (HT) are used, as learners, to compare the performance of the algorithms on artificial and realworld data-sets. An extensive experimental investigation with a total of 70 experiments and application of Friedman and Nemenyi statistical tests showed the families FASEO and FASEB are more efficient than FASE with respect to execution time and memory in many scenarios, often also achieving better accuracy results.
id UFPE_f52538aaaaa4291adf0d7d727caaa03f
oai_identifier_str oai:repositorio.ufpe.br:123456789/36042
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Variants of the Fast Adaptive Stacking of Ensembles algorithmInteligência artificialMudanças de conceitoFluxo de dadosMétodos de Combinação de ClassificadoresThe treatment of large data streams in the presence of concept drifts is one of the main challenges in the fields of machine learning and data mining. This dissertation presents two families of ensemble algorithms designed to quickly adapt to concept drifts, both abrupt and gradual. The families Fast Stacking of Ensembles boosting the Old (FASEO) and Fast Stacking of Ensembles boosting the Best (FASEB) are adaptations of the Fast Adaptive Stacking of Ensembles (FASE) algorithm, designed to improve run-time and memory requirements, without presenting a significant decrease in terms of accuracy when compared to the original FASE. In order to achieve a more efficient model, adjustments were made in the update strategy and voting procedure of the ensemble. To evaluate the proposals against state of the art methods, Naïve Bayes (NB) and Hoeffding Tree (HT) are used, as learners, to compare the performance of the algorithms on artificial and realworld data-sets. An extensive experimental investigation with a total of 70 experiments and application of Friedman and Nemenyi statistical tests showed the families FASEO and FASEB are more efficient than FASE with respect to execution time and memory in many scenarios, often also achieving better accuracy results.CAPESO tratamento de grandes fluxos de dados na presença de mudanças de conceito é um dos principais desafios nas áreas de aprendizado de máquina e mineração de dados. Essa dissertação apresenta duas famílias de algoritmos de combinação de classificadores projetados para se adaptar rapidamente a mudanças de conceitos, tanto abruptos quanto graduais. As famílias Fast Stacking of Ensembles boosting the Old (FASEO) e Fast Stacking of Ensembles boosting the Best (FASEB) são adaptações do algoritmo Fast Stacking of Ensembles (FASE), projetadas para melhorar seu tempo de execução e consumo de memória, sem apresentar uma diminuição significativa de desempenho em termos de acurácia em comparação com o algoritmo original. Para obter um modelo mais eficiente, foram feitos ajustes na estratégia de atualização e no processo de votação de FASE. Para avaliar as propostas em relação ao estado da arte, usamos o Naive Bayes (NB) e o Hoeffding Tree (HT) como classificadores base para comparar o desempenho dos algoritmos em conjuntos de dados reais e sintéticos. Um avaliação experimental extensa, com um total 70 experimentos e emprego dos testes estatísticos de Friedman e Nemenyi, mostraram que as famílias FASEO e FASEB são mais eficientes que FASE com respeito a tempo de execução e memória em vários cenários, as vezes alcançando também melhores resultados na acurácia dos algoritmos.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoVASCONCELOS, Germano Crispimhttp://lattes.cnpq.br/4050952327940886http://lattes.cnpq.br/5943634209341438MARIÑO, Laura María Palomino2020-01-17T12:03:06Z2020-01-17T12:03:06Z2019-07-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMARIÑO, Laura María Palomino Variants of the Fast Adaptive Stacking of Ensembles algorithm. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.https://repositorio.ufpe.br/handle/123456789/36042porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-01-18T05:15:58Zoai:repositorio.ufpe.br:123456789/36042Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-01-18T05:15:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Variants of the Fast Adaptive Stacking of Ensembles algorithm
title Variants of the Fast Adaptive Stacking of Ensembles algorithm
spellingShingle Variants of the Fast Adaptive Stacking of Ensembles algorithm
MARIÑO, Laura María Palomino
Inteligência artificial
Mudanças de conceito
Fluxo de dados
Métodos de Combinação de Classificadores
title_short Variants of the Fast Adaptive Stacking of Ensembles algorithm
title_full Variants of the Fast Adaptive Stacking of Ensembles algorithm
title_fullStr Variants of the Fast Adaptive Stacking of Ensembles algorithm
title_full_unstemmed Variants of the Fast Adaptive Stacking of Ensembles algorithm
title_sort Variants of the Fast Adaptive Stacking of Ensembles algorithm
author MARIÑO, Laura María Palomino
author_facet MARIÑO, Laura María Palomino
author_role author
dc.contributor.none.fl_str_mv VASCONCELOS, Germano Crispim
http://lattes.cnpq.br/4050952327940886
http://lattes.cnpq.br/5943634209341438
dc.contributor.author.fl_str_mv MARIÑO, Laura María Palomino
dc.subject.por.fl_str_mv Inteligência artificial
Mudanças de conceito
Fluxo de dados
Métodos de Combinação de Classificadores
topic Inteligência artificial
Mudanças de conceito
Fluxo de dados
Métodos de Combinação de Classificadores
description The treatment of large data streams in the presence of concept drifts is one of the main challenges in the fields of machine learning and data mining. This dissertation presents two families of ensemble algorithms designed to quickly adapt to concept drifts, both abrupt and gradual. The families Fast Stacking of Ensembles boosting the Old (FASEO) and Fast Stacking of Ensembles boosting the Best (FASEB) are adaptations of the Fast Adaptive Stacking of Ensembles (FASE) algorithm, designed to improve run-time and memory requirements, without presenting a significant decrease in terms of accuracy when compared to the original FASE. In order to achieve a more efficient model, adjustments were made in the update strategy and voting procedure of the ensemble. To evaluate the proposals against state of the art methods, Naïve Bayes (NB) and Hoeffding Tree (HT) are used, as learners, to compare the performance of the algorithms on artificial and realworld data-sets. An extensive experimental investigation with a total of 70 experiments and application of Friedman and Nemenyi statistical tests showed the families FASEO and FASEB are more efficient than FASE with respect to execution time and memory in many scenarios, often also achieving better accuracy results.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-26
2020-01-17T12:03:06Z
2020-01-17T12:03:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MARIÑO, Laura María Palomino Variants of the Fast Adaptive Stacking of Ensembles algorithm. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.
https://repositorio.ufpe.br/handle/123456789/36042
identifier_str_mv MARIÑO, Laura María Palomino Variants of the Fast Adaptive Stacking of Ensembles algorithm. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.
url https://repositorio.ufpe.br/handle/123456789/36042
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041878073376768