An investigation into the effects of label noise on dynamic selection algorithms

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: WALMSLEY, Felipe Nunes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/37647
Resumo: In the literature on classification problems, it is widely discussed how the presence of label noise can bring about severe degradation in performance. Several works have applied Prototype Selection techniques, Ensemble Methods, or both, in an attempt to alleviate this issue. Nevertheless, these methods are not always able to sufficiently counteract the effects of noise. In this work, we investigate the effects of noise on a particular class of Ensemble Methods, that of Dynamic Selection algorithms, and we are especially interested in the behavior of the Fire-DES++ algorithm, a state of the art algorithm which applies the ENN to algorithm to deal with the effects of noise and imbalance. We propose a method which employs multiple Dynamic Selection sets, based on the Bagging-IH algorithm, which we dub Multiple-Set Dynamic Selection (MSDS), in an attempt to supplant the ENN algorithm on the filtering step. We find that almost all methods based on Dynamic Selection are severely affected by the presence of label noise, with the exception of the KNORAU algorithm. We also find that our proposed method can alleviate the issues caused by noise in some specific scenarios.
id UFPE_f82cd93d4efd88b510bfb775d0b781b2
oai_identifier_str oai:repositorio.ufpe.br:123456789/37647
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling An investigation into the effects of label noise on dynamic selection algorithmsMétodos de EnsembleSistemas de múltiplos classificadoresSeleção dinâmicaRuído de classeIn the literature on classification problems, it is widely discussed how the presence of label noise can bring about severe degradation in performance. Several works have applied Prototype Selection techniques, Ensemble Methods, or both, in an attempt to alleviate this issue. Nevertheless, these methods are not always able to sufficiently counteract the effects of noise. In this work, we investigate the effects of noise on a particular class of Ensemble Methods, that of Dynamic Selection algorithms, and we are especially interested in the behavior of the Fire-DES++ algorithm, a state of the art algorithm which applies the ENN to algorithm to deal with the effects of noise and imbalance. We propose a method which employs multiple Dynamic Selection sets, based on the Bagging-IH algorithm, which we dub Multiple-Set Dynamic Selection (MSDS), in an attempt to supplant the ENN algorithm on the filtering step. We find that almost all methods based on Dynamic Selection are severely affected by the presence of label noise, with the exception of the KNORAU algorithm. We also find that our proposed method can alleviate the issues caused by noise in some specific scenarios.CAPESNa literatura de problemas de classificação, é amplamente discutido como a presença de ruído nos rótulos de classe pode acarretar grave degradação na performance. Vários trabalhos aplicam técnicas de Seleção de Protótipos, Métodos de Ensemble, ou ambos, em uma tentativa de aliviar esse problema. Não obstante, esses métodos nem sempre são capazes de contrabalançar os efeitos do ruído. Neste trabalho, nós investigamos o efeito do ruído em uma classe em particular de Métodos de Ensemble, a classe dos métodos de Seleção Dinâmica, e estamos particularmente interessados no comportamento do algoritmo Fire-DES++, um algoritmo estado da arte que aplica o método Edited Nearest Neighbors (ENN) para lidar com os efeitos de ruído e desbalanceamento. Nós propomos um método que emprega múltiplos conjuntos de Seleção Dinâmica, baseado no algoritmo Bagging-IH, que nós nomeamos Multiple-Set Dynamic Selection (MSDS), em uma tentativa de suplantar o algoritmo ENN no passo de filtragem. Nós observamos que quase todos os métodos baseados em Seleção Dinâmica são fortemente afetados pela presença de ruído, exceto o algoritmo KNORAU. Nós também observamos que, em alguns cenários específicos, o nosso método proposto pode amenizar os problemas causados pelo ruído.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoCAVALCANTI, George Darmiton da CunhaSABOURIN, Roberthttp://lattes.cnpq.br/8652242028413094http://lattes.cnpq.br/8577312109146354http://lattes.cnpq.br/6269525393139517WALMSLEY, Felipe Nunes2020-08-14T17:04:59Z2020-08-14T17:04:59Z2020-01-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfWALMSLEY, Felipe Nunes. An investigation into the effects of label noise on dynamic selection algorithms. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/37647porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-08-15T05:10:16Zoai:repositorio.ufpe.br:123456789/37647Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-08-15T05:10:16Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv An investigation into the effects of label noise on dynamic selection algorithms
title An investigation into the effects of label noise on dynamic selection algorithms
spellingShingle An investigation into the effects of label noise on dynamic selection algorithms
WALMSLEY, Felipe Nunes
Métodos de Ensemble
Sistemas de múltiplos classificadores
Seleção dinâmica
Ruído de classe
title_short An investigation into the effects of label noise on dynamic selection algorithms
title_full An investigation into the effects of label noise on dynamic selection algorithms
title_fullStr An investigation into the effects of label noise on dynamic selection algorithms
title_full_unstemmed An investigation into the effects of label noise on dynamic selection algorithms
title_sort An investigation into the effects of label noise on dynamic selection algorithms
author WALMSLEY, Felipe Nunes
author_facet WALMSLEY, Felipe Nunes
author_role author
dc.contributor.none.fl_str_mv CAVALCANTI, George Darmiton da Cunha
SABOURIN, Robert
http://lattes.cnpq.br/8652242028413094
http://lattes.cnpq.br/8577312109146354
http://lattes.cnpq.br/6269525393139517
dc.contributor.author.fl_str_mv WALMSLEY, Felipe Nunes
dc.subject.por.fl_str_mv Métodos de Ensemble
Sistemas de múltiplos classificadores
Seleção dinâmica
Ruído de classe
topic Métodos de Ensemble
Sistemas de múltiplos classificadores
Seleção dinâmica
Ruído de classe
description In the literature on classification problems, it is widely discussed how the presence of label noise can bring about severe degradation in performance. Several works have applied Prototype Selection techniques, Ensemble Methods, or both, in an attempt to alleviate this issue. Nevertheless, these methods are not always able to sufficiently counteract the effects of noise. In this work, we investigate the effects of noise on a particular class of Ensemble Methods, that of Dynamic Selection algorithms, and we are especially interested in the behavior of the Fire-DES++ algorithm, a state of the art algorithm which applies the ENN to algorithm to deal with the effects of noise and imbalance. We propose a method which employs multiple Dynamic Selection sets, based on the Bagging-IH algorithm, which we dub Multiple-Set Dynamic Selection (MSDS), in an attempt to supplant the ENN algorithm on the filtering step. We find that almost all methods based on Dynamic Selection are severely affected by the presence of label noise, with the exception of the KNORAU algorithm. We also find that our proposed method can alleviate the issues caused by noise in some specific scenarios.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-14T17:04:59Z
2020-08-14T17:04:59Z
2020-01-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv WALMSLEY, Felipe Nunes. An investigation into the effects of label noise on dynamic selection algorithms. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.
https://repositorio.ufpe.br/handle/123456789/37647
identifier_str_mv WALMSLEY, Felipe Nunes. An investigation into the effects of label noise on dynamic selection algorithms. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.
url https://repositorio.ufpe.br/handle/123456789/37647
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041956005642240