n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pelotas
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Computação
|
| Departamento: |
Centro de Desenvolvimento Tecnológico
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://guaiaca.ufpel.edu.br/handle/prefix/6279 |
Resumo: | The n-dimensional fuzzy logic (n-DFL) is an extension of the fuzzy logic (FL) as old as hesitant fuzzy sets and less exploited, motivating new investigations, and promoting results to consolidate this research area. The study of n-DFL contributes to overcome the insufficiency of traditional fuzzy logic in modeling imperfect and imprecise information coming from different opinions of experts. Moreover, the possibility to model repeated and ordered degrees of membership in the n-dimensional fuzzy sets is considered a consolidated strategy in applied technologies including areas as pattern recognition, image processing, data mining and mathematical morphology. This large field of applications motivate the studies developed in this work. Based on representability of n-dimensional fuzzy connectives, we are able to extend relevant theoretical results from fuzzy connectives to n-dimensional fuzzy approach. In particular, this proposal introduces the study of n-dimensional fuzzy implications (n-DI) following distinct approaches: (i) analytical studies, defining n-DI, presenting the most desirable properties as neutrality, ordering, (contra-)symmetry, exchange and identity principles, and also discussing their interrelationships and exemplifications; (ii) algebraic aspects mainly related to left- and right-continuity of representable n-dimensional fuzzy t-norms and the generation of n-DI from existing fuzzy implications; (iii) n-dimensional approach of fuzzy implication classes explicitly represented by fuzzy connectives, as (S;N)-implications and QL-implications; (iv) prospective studies of n-dimensional R-implications (n-DRI), analyzing extended conditions to verify the residuation principle and their characterization based on n-dimensional t-norms and n-DI; (v) constructive method obtaining n-DRI based on n-dimensional aggregation operators, presenting an exemplification in the solution of a problem involving CIM-MCDM, based on Łukasiewicz n-DRI; and also including (vi) an introductory study considering an n-DI in modeling approximate reasoning of inference schemes, dealing with the effecting role of such connectives in based-rule fuzzy systems. In addition, taking into account the action of automorphism and fuzzy negations on Ln(U), conjugate and dual operators of n-DI can be respectively obtained, preserving algebraic and analytical properties. |
| id |
UFPL_dcc236e0f07ad45e28206a14bd71d3ad |
|---|---|
| oai_identifier_str |
oai:guaiaca.ufpel.edu.br:prefix/6279 |
| network_acronym_str |
UFPL |
| network_name_str |
Repositório Institucional da UFPel - Guaiaca |
| repository_id_str |
|
| spelling |
2020-07-24T23:44:16Z2020-07-24T23:44:16Z2020-03-12ZANOTELLI, Rosana Medina. n-Dimensional Fuzzy Implications: Analytical, Algebraic and Applicational Approaches. Advisor: Renata Hax Sander Reiser. 2020. 117 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2020.http://guaiaca.ufpel.edu.br/handle/prefix/6279The n-dimensional fuzzy logic (n-DFL) is an extension of the fuzzy logic (FL) as old as hesitant fuzzy sets and less exploited, motivating new investigations, and promoting results to consolidate this research area. The study of n-DFL contributes to overcome the insufficiency of traditional fuzzy logic in modeling imperfect and imprecise information coming from different opinions of experts. Moreover, the possibility to model repeated and ordered degrees of membership in the n-dimensional fuzzy sets is considered a consolidated strategy in applied technologies including areas as pattern recognition, image processing, data mining and mathematical morphology. This large field of applications motivate the studies developed in this work. Based on representability of n-dimensional fuzzy connectives, we are able to extend relevant theoretical results from fuzzy connectives to n-dimensional fuzzy approach. In particular, this proposal introduces the study of n-dimensional fuzzy implications (n-DI) following distinct approaches: (i) analytical studies, defining n-DI, presenting the most desirable properties as neutrality, ordering, (contra-)symmetry, exchange and identity principles, and also discussing their interrelationships and exemplifications; (ii) algebraic aspects mainly related to left- and right-continuity of representable n-dimensional fuzzy t-norms and the generation of n-DI from existing fuzzy implications; (iii) n-dimensional approach of fuzzy implication classes explicitly represented by fuzzy connectives, as (S;N)-implications and QL-implications; (iv) prospective studies of n-dimensional R-implications (n-DRI), analyzing extended conditions to verify the residuation principle and their characterization based on n-dimensional t-norms and n-DI; (v) constructive method obtaining n-DRI based on n-dimensional aggregation operators, presenting an exemplification in the solution of a problem involving CIM-MCDM, based on Łukasiewicz n-DRI; and also including (vi) an introductory study considering an n-DI in modeling approximate reasoning of inference schemes, dealing with the effecting role of such connectives in based-rule fuzzy systems. In addition, taking into account the action of automorphism and fuzzy negations on Ln(U), conjugate and dual operators of n-DI can be respectively obtained, preserving algebraic and analytical properties.A lógica fuzzy n-dimensional (n-DFL) é uma extensão da lógica fuzzy (FL) tão antiga quanto conjuntos fuzzy hesitantes e menos explorada, motivando novas investigações e promovendo resultados para consolidar essa área de pesquisa. O estudo do n-DFL contribui para superar a insuficiência da lógica fuzzy tradicional na modelagem de informações imperfeitas e imprecisas provenientes de diferentes opiniões de especialistas. Além disso, a possibilidade de modelar graus de pertinência repetidos e ordenados nos conjuntos fuzzy n-dimensionais é considerada uma estratégia consolidada em tecnologias aplicadas, incluindo áreas como reconhecimento de padrões, processamento de imagens, mineração de dados e morfologia matemática. Esse amplo campo de aplicações motiva os estudos desenvolvidos neste trabalho. Com base na representabilidade dos conectivos fuzzy n-dimensionais, somos capazes de estender os relevantes resultados teóricos dos conectivos fuzzy à abordagem fuzzy n-dimensional. Em particular, esta proposta introduz o estudo das implicações fuzzy n-dimensionais (n-DI), seguindo abordagens distintas: (i) estudos analíticos, definindo n-DI, apresentando as propriedades mais desejáveis como neutralidade, ordenação, (contra)-simetria, princípios de troca e identidade e também discutindo suas inter-relações e exemplificações; (ii) aspectos algébrico relacionados principalmente à continuidade esquerda e direita de t-normas fuzzy n-dimensional representável e a geração de n-DI a partir de implicações fuzzy existentes; (iii) abordagem n-dimensional de classes de implicações fuzzy representadas explicitamente por conectivos fuzzy, como (S,N)-implicações e QL-implicações; (iv) estudos prospectivos de R-implicações n-dimensionais (n-DRI), analisando condições estendidas para verificar o princípio da residuação e sua caracterização com base nas t-normas n-dimensionais e n-DI; (v) método construtivo de obtenção de n-DRI com base em operadores de agregação n-dimensionais, apresentando uma exemplificação na solução de um problema envolvendo CIM-MCDM, com base em n-DRI Łukasiewicz; e também incluindo (vi) um estudo introdutório considerando um n-DI na modelagem de esquemas de inferência do raciocínio aproximado, lidando com o papel efetivo de tais conectivos em sistemas fuzzy baseado em regras. Além disso, considera a ação do automorfismo e das negações fuzzy em Ln(U), operadores duais e conjugados de n-DI podem ser obtidos respectivamente, preservando as propriedades algébricas e analíticas.Sem bolsaporUniversidade Federal de PelotasPrograma de Pós-Graduação em ComputaçãoUFPelBrasilCentro de Desenvolvimento TecnológicoCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOComputaçãon-dimensional fuzzy setsn-dimensional fuzzy implicationsn-dimensional intervalsn-dimensional (S;N)-implicationsn-dimensional QL-implicationsn-dimensional R-implicationsApproximate reasoningConjuntos fuzzy n-dimensionaisImplicações fuzzy n-dimensionaisIntervalos n-dimensionais(S;N)-implicações n-dimensionaisQL-implicações n-dimensionaisR-implicações n-dimensionaisRaciocínio aproximadon-Dimensional fuzzy implications: analytical, algebraic and applicational approachesImplicações Fuzzy n-Dimensionais: Abordagens Analítica, Algébrica e Aplicacional.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://lattes.cnpq.br/0946244793710934http://lattes.cnpq.br/3283691152621834Callejas Bedregal, Benjamín Renéhttp://lattes.cnpq.br/4601263005352005Reiser, Renata Hax SanderZanotelli, Rosana Medinainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPELTEXTTese_Rosana_Medina_Zanotelli.pdf.txtTese_Rosana_Medina_Zanotelli.pdf.txtExtracted texttext/plain220617http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/6/Tese_Rosana_Medina_Zanotelli.pdf.txtf090524a184e3f5c82493a003d9a58a0MD56open accessTHUMBNAILTese_Rosana_Medina_Zanotelli.pdf.jpgTese_Rosana_Medina_Zanotelli.pdf.jpgGenerated Thumbnailimage/jpeg1234http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/7/Tese_Rosana_Medina_Zanotelli.pdf.jpg0920758a5a531df65714196ad4991e79MD57open accessORIGINALTese_Rosana_Medina_Zanotelli.pdfTese_Rosana_Medina_Zanotelli.pdfapplication/pdf727880http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/1/Tese_Rosana_Medina_Zanotelli.pdfcb03b45ec339635abe56c3c8a42227ffMD51open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52open accesslicense_textlicense_texttext/html; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/5/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD55open accessprefix/62792023-07-13 07:32:43.244open accessoai:guaiaca.ufpel.edu.br:prefix/6279TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2023-07-13T10:32:43Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false |
| dc.title.pt_BR.fl_str_mv |
n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches |
| dc.title.alternative.pt_BR.fl_str_mv |
Implicações Fuzzy n-Dimensionais: Abordagens Analítica, Algébrica e Aplicacional. |
| title |
n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches |
| spellingShingle |
n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches Zanotelli, Rosana Medina CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Computação n-dimensional fuzzy sets n-dimensional fuzzy implications n-dimensional intervals n-dimensional (S;N)-implications n-dimensional QL-implications n-dimensional R-implications Approximate reasoning Conjuntos fuzzy n-dimensionais Implicações fuzzy n-dimensionais Intervalos n-dimensionais (S;N)-implicações n-dimensionais QL-implicações n-dimensionais R-implicações n-dimensionais Raciocínio aproximado |
| title_short |
n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches |
| title_full |
n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches |
| title_fullStr |
n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches |
| title_full_unstemmed |
n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches |
| title_sort |
n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches |
| author |
Zanotelli, Rosana Medina |
| author_facet |
Zanotelli, Rosana Medina |
| author_role |
author |
| dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0946244793710934 |
| dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3283691152621834 |
| dc.contributor.advisor-co1.fl_str_mv |
Callejas Bedregal, Benjamín René |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4601263005352005 |
| dc.contributor.advisor1.fl_str_mv |
Reiser, Renata Hax Sander |
| dc.contributor.author.fl_str_mv |
Zanotelli, Rosana Medina |
| contributor_str_mv |
Callejas Bedregal, Benjamín René Reiser, Renata Hax Sander |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Computação n-dimensional fuzzy sets n-dimensional fuzzy implications n-dimensional intervals n-dimensional (S;N)-implications n-dimensional QL-implications n-dimensional R-implications Approximate reasoning Conjuntos fuzzy n-dimensionais Implicações fuzzy n-dimensionais Intervalos n-dimensionais (S;N)-implicações n-dimensionais QL-implicações n-dimensionais R-implicações n-dimensionais Raciocínio aproximado |
| dc.subject.por.fl_str_mv |
Computação n-dimensional fuzzy sets n-dimensional fuzzy implications n-dimensional intervals n-dimensional (S;N)-implications n-dimensional QL-implications n-dimensional R-implications Approximate reasoning Conjuntos fuzzy n-dimensionais Implicações fuzzy n-dimensionais Intervalos n-dimensionais (S;N)-implicações n-dimensionais QL-implicações n-dimensionais R-implicações n-dimensionais Raciocínio aproximado |
| description |
The n-dimensional fuzzy logic (n-DFL) is an extension of the fuzzy logic (FL) as old as hesitant fuzzy sets and less exploited, motivating new investigations, and promoting results to consolidate this research area. The study of n-DFL contributes to overcome the insufficiency of traditional fuzzy logic in modeling imperfect and imprecise information coming from different opinions of experts. Moreover, the possibility to model repeated and ordered degrees of membership in the n-dimensional fuzzy sets is considered a consolidated strategy in applied technologies including areas as pattern recognition, image processing, data mining and mathematical morphology. This large field of applications motivate the studies developed in this work. Based on representability of n-dimensional fuzzy connectives, we are able to extend relevant theoretical results from fuzzy connectives to n-dimensional fuzzy approach. In particular, this proposal introduces the study of n-dimensional fuzzy implications (n-DI) following distinct approaches: (i) analytical studies, defining n-DI, presenting the most desirable properties as neutrality, ordering, (contra-)symmetry, exchange and identity principles, and also discussing their interrelationships and exemplifications; (ii) algebraic aspects mainly related to left- and right-continuity of representable n-dimensional fuzzy t-norms and the generation of n-DI from existing fuzzy implications; (iii) n-dimensional approach of fuzzy implication classes explicitly represented by fuzzy connectives, as (S;N)-implications and QL-implications; (iv) prospective studies of n-dimensional R-implications (n-DRI), analyzing extended conditions to verify the residuation principle and their characterization based on n-dimensional t-norms and n-DI; (v) constructive method obtaining n-DRI based on n-dimensional aggregation operators, presenting an exemplification in the solution of a problem involving CIM-MCDM, based on Łukasiewicz n-DRI; and also including (vi) an introductory study considering an n-DI in modeling approximate reasoning of inference schemes, dealing with the effecting role of such connectives in based-rule fuzzy systems. In addition, taking into account the action of automorphism and fuzzy negations on Ln(U), conjugate and dual operators of n-DI can be respectively obtained, preserving algebraic and analytical properties. |
| publishDate |
2020 |
| dc.date.accessioned.fl_str_mv |
2020-07-24T23:44:16Z |
| dc.date.available.fl_str_mv |
2020-07-24T23:44:16Z |
| dc.date.issued.fl_str_mv |
2020-03-12 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ZANOTELLI, Rosana Medina. n-Dimensional Fuzzy Implications: Analytical, Algebraic and Applicational Approaches. Advisor: Renata Hax Sander Reiser. 2020. 117 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2020. |
| dc.identifier.uri.fl_str_mv |
http://guaiaca.ufpel.edu.br/handle/prefix/6279 |
| identifier_str_mv |
ZANOTELLI, Rosana Medina. n-Dimensional Fuzzy Implications: Analytical, Algebraic and Applicational Approaches. Advisor: Renata Hax Sander Reiser. 2020. 117 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2020. |
| url |
http://guaiaca.ufpel.edu.br/handle/prefix/6279 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pelotas |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Computação |
| dc.publisher.initials.fl_str_mv |
UFPel |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Centro de Desenvolvimento Tecnológico |
| publisher.none.fl_str_mv |
Universidade Federal de Pelotas |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPel - Guaiaca instname:Universidade Federal de Pelotas (UFPEL) instacron:UFPEL |
| instname_str |
Universidade Federal de Pelotas (UFPEL) |
| instacron_str |
UFPEL |
| institution |
UFPEL |
| reponame_str |
Repositório Institucional da UFPel - Guaiaca |
| collection |
Repositório Institucional da UFPel - Guaiaca |
| bitstream.url.fl_str_mv |
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/6/Tese_Rosana_Medina_Zanotelli.pdf.txt http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/7/Tese_Rosana_Medina_Zanotelli.pdf.jpg http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/1/Tese_Rosana_Medina_Zanotelli.pdf http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/2/license_url http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/3/license_text http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/4/license_rdf http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/5/license.txt |
| bitstream.checksum.fl_str_mv |
f090524a184e3f5c82493a003d9a58a0 0920758a5a531df65714196ad4991e79 cb03b45ec339635abe56c3c8a42227ff 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 43cd690d6a359e86c1fe3d5b7cba0c9b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL) |
| repository.mail.fl_str_mv |
rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br |
| _version_ |
1856426246953500672 |