n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Zanotelli, Rosana Medina
Orientador(a): Reiser, Renata Hax Sander
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Centro de Desenvolvimento Tecnológico
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/handle/prefix/6279
Resumo: The n-dimensional fuzzy logic (n-DFL) is an extension of the fuzzy logic (FL) as old as hesitant fuzzy sets and less exploited, motivating new investigations, and promoting results to consolidate this research area. The study of n-DFL contributes to overcome the insufficiency of traditional fuzzy logic in modeling imperfect and imprecise information coming from different opinions of experts. Moreover, the possibility to model repeated and ordered degrees of membership in the n-dimensional fuzzy sets is considered a consolidated strategy in applied technologies including areas as pattern recognition, image processing, data mining and mathematical morphology. This large field of applications motivate the studies developed in this work. Based on representability of n-dimensional fuzzy connectives, we are able to extend relevant theoretical results from fuzzy connectives to n-dimensional fuzzy approach. In particular, this proposal introduces the study of n-dimensional fuzzy implications (n-DI) following distinct approaches: (i) analytical studies, defining n-DI, presenting the most desirable properties as neutrality, ordering, (contra-)symmetry, exchange and identity principles, and also discussing their interrelationships and exemplifications; (ii) algebraic aspects mainly related to left- and right-continuity of representable n-dimensional fuzzy t-norms and the generation of n-DI from existing fuzzy implications; (iii) n-dimensional approach of fuzzy implication classes explicitly represented by fuzzy connectives, as (S;N)-implications and QL-implications; (iv) prospective studies of n-dimensional R-implications (n-DRI), analyzing extended conditions to verify the residuation principle and their characterization based on n-dimensional t-norms and n-DI; (v) constructive method obtaining n-DRI based on n-dimensional aggregation operators, presenting an exemplification in the solution of a problem involving CIM-MCDM, based on Łukasiewicz n-DRI; and also including (vi) an introductory study considering an n-DI in modeling approximate reasoning of inference schemes, dealing with the effecting role of such connectives in based-rule fuzzy systems. In addition, taking into account the action of automorphism and fuzzy negations on Ln(U), conjugate and dual operators of n-DI can be respectively obtained, preserving algebraic and analytical properties.
id UFPL_dcc236e0f07ad45e28206a14bd71d3ad
oai_identifier_str oai:guaiaca.ufpel.edu.br:prefix/6279
network_acronym_str UFPL
network_name_str Repositório Institucional da UFPel - Guaiaca
repository_id_str
spelling 2020-07-24T23:44:16Z2020-07-24T23:44:16Z2020-03-12ZANOTELLI, Rosana Medina. n-Dimensional Fuzzy Implications: Analytical, Algebraic and Applicational Approaches. Advisor: Renata Hax Sander Reiser. 2020. 117 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2020.http://guaiaca.ufpel.edu.br/handle/prefix/6279The n-dimensional fuzzy logic (n-DFL) is an extension of the fuzzy logic (FL) as old as hesitant fuzzy sets and less exploited, motivating new investigations, and promoting results to consolidate this research area. The study of n-DFL contributes to overcome the insufficiency of traditional fuzzy logic in modeling imperfect and imprecise information coming from different opinions of experts. Moreover, the possibility to model repeated and ordered degrees of membership in the n-dimensional fuzzy sets is considered a consolidated strategy in applied technologies including areas as pattern recognition, image processing, data mining and mathematical morphology. This large field of applications motivate the studies developed in this work. Based on representability of n-dimensional fuzzy connectives, we are able to extend relevant theoretical results from fuzzy connectives to n-dimensional fuzzy approach. In particular, this proposal introduces the study of n-dimensional fuzzy implications (n-DI) following distinct approaches: (i) analytical studies, defining n-DI, presenting the most desirable properties as neutrality, ordering, (contra-)symmetry, exchange and identity principles, and also discussing their interrelationships and exemplifications; (ii) algebraic aspects mainly related to left- and right-continuity of representable n-dimensional fuzzy t-norms and the generation of n-DI from existing fuzzy implications; (iii) n-dimensional approach of fuzzy implication classes explicitly represented by fuzzy connectives, as (S;N)-implications and QL-implications; (iv) prospective studies of n-dimensional R-implications (n-DRI), analyzing extended conditions to verify the residuation principle and their characterization based on n-dimensional t-norms and n-DI; (v) constructive method obtaining n-DRI based on n-dimensional aggregation operators, presenting an exemplification in the solution of a problem involving CIM-MCDM, based on Łukasiewicz n-DRI; and also including (vi) an introductory study considering an n-DI in modeling approximate reasoning of inference schemes, dealing with the effecting role of such connectives in based-rule fuzzy systems. In addition, taking into account the action of automorphism and fuzzy negations on Ln(U), conjugate and dual operators of n-DI can be respectively obtained, preserving algebraic and analytical properties.A lógica fuzzy n-dimensional (n-DFL) é uma extensão da lógica fuzzy (FL) tão antiga quanto conjuntos fuzzy hesitantes e menos explorada, motivando novas investigações e promovendo resultados para consolidar essa área de pesquisa. O estudo do n-DFL contribui para superar a insuficiência da lógica fuzzy tradicional na modelagem de informações imperfeitas e imprecisas provenientes de diferentes opiniões de especialistas. Além disso, a possibilidade de modelar graus de pertinência repetidos e ordenados nos conjuntos fuzzy n-dimensionais é considerada uma estratégia consolidada em tecnologias aplicadas, incluindo áreas como reconhecimento de padrões, processamento de imagens, mineração de dados e morfologia matemática. Esse amplo campo de aplicações motiva os estudos desenvolvidos neste trabalho. Com base na representabilidade dos conectivos fuzzy n-dimensionais, somos capazes de estender os relevantes resultados teóricos dos conectivos fuzzy à abordagem fuzzy n-dimensional. Em particular, esta proposta introduz o estudo das implicações fuzzy n-dimensionais (n-DI), seguindo abordagens distintas: (i) estudos analíticos, definindo n-DI, apresentando as propriedades mais desejáveis como neutralidade, ordenação, (contra)-simetria, princípios de troca e identidade e também discutindo suas inter-relações e exemplificações; (ii) aspectos algébrico relacionados principalmente à continuidade esquerda e direita de t-normas fuzzy n-dimensional representável e a geração de n-DI a partir de implicações fuzzy existentes; (iii) abordagem n-dimensional de classes de implicações fuzzy representadas explicitamente por conectivos fuzzy, como (S,N)-implicações e QL-implicações; (iv) estudos prospectivos de R-implicações n-dimensionais (n-DRI), analisando condições estendidas para verificar o princípio da residuação e sua caracterização com base nas t-normas n-dimensionais e n-DI; (v) método construtivo de obtenção de n-DRI com base em operadores de agregação n-dimensionais, apresentando uma exemplificação na solução de um problema envolvendo CIM-MCDM, com base em n-DRI Łukasiewicz; e também incluindo (vi) um estudo introdutório considerando um n-DI na modelagem de esquemas de inferência do raciocínio aproximado, lidando com o papel efetivo de tais conectivos em sistemas fuzzy baseado em regras. Além disso, considera a ação do automorfismo e das negações fuzzy em Ln(U), operadores duais e conjugados de n-DI podem ser obtidos respectivamente, preservando as propriedades algébricas e analíticas.Sem bolsaporUniversidade Federal de PelotasPrograma de Pós-Graduação em ComputaçãoUFPelBrasilCentro de Desenvolvimento TecnológicoCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOComputaçãon-dimensional fuzzy setsn-dimensional fuzzy implicationsn-dimensional intervalsn-dimensional (S;N)-implicationsn-dimensional QL-implicationsn-dimensional R-implicationsApproximate reasoningConjuntos fuzzy n-dimensionaisImplicações fuzzy n-dimensionaisIntervalos n-dimensionais(S;N)-implicações n-dimensionaisQL-implicações n-dimensionaisR-implicações n-dimensionaisRaciocínio aproximadon-Dimensional fuzzy implications: analytical, algebraic and applicational approachesImplicações Fuzzy n-Dimensionais: Abordagens Analítica, Algébrica e Aplicacional.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://lattes.cnpq.br/0946244793710934http://lattes.cnpq.br/3283691152621834Callejas Bedregal, Benjamín Renéhttp://lattes.cnpq.br/4601263005352005Reiser, Renata Hax SanderZanotelli, Rosana Medinainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPELTEXTTese_Rosana_Medina_Zanotelli.pdf.txtTese_Rosana_Medina_Zanotelli.pdf.txtExtracted texttext/plain220617http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/6/Tese_Rosana_Medina_Zanotelli.pdf.txtf090524a184e3f5c82493a003d9a58a0MD56open accessTHUMBNAILTese_Rosana_Medina_Zanotelli.pdf.jpgTese_Rosana_Medina_Zanotelli.pdf.jpgGenerated Thumbnailimage/jpeg1234http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/7/Tese_Rosana_Medina_Zanotelli.pdf.jpg0920758a5a531df65714196ad4991e79MD57open accessORIGINALTese_Rosana_Medina_Zanotelli.pdfTese_Rosana_Medina_Zanotelli.pdfapplication/pdf727880http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/1/Tese_Rosana_Medina_Zanotelli.pdfcb03b45ec339635abe56c3c8a42227ffMD51open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52open accesslicense_textlicense_texttext/html; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/5/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD55open accessprefix/62792023-07-13 07:32:43.244open accessoai:guaiaca.ufpel.edu.br:prefix/6279TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2023-07-13T10:32:43Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false
dc.title.pt_BR.fl_str_mv n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
dc.title.alternative.pt_BR.fl_str_mv Implicações Fuzzy n-Dimensionais: Abordagens Analítica, Algébrica e Aplicacional.
title n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
spellingShingle n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
Zanotelli, Rosana Medina
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação
n-dimensional fuzzy sets
n-dimensional fuzzy implications
n-dimensional intervals
n-dimensional (S;N)-implications
n-dimensional QL-implications
n-dimensional R-implications
Approximate reasoning
Conjuntos fuzzy n-dimensionais
Implicações fuzzy n-dimensionais
Intervalos n-dimensionais
(S;N)-implicações n-dimensionais
QL-implicações n-dimensionais
R-implicações n-dimensionais
Raciocínio aproximado
title_short n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
title_full n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
title_fullStr n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
title_full_unstemmed n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
title_sort n-Dimensional fuzzy implications: analytical, algebraic and applicational approaches
author Zanotelli, Rosana Medina
author_facet Zanotelli, Rosana Medina
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0946244793710934
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3283691152621834
dc.contributor.advisor-co1.fl_str_mv Callejas Bedregal, Benjamín René
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4601263005352005
dc.contributor.advisor1.fl_str_mv Reiser, Renata Hax Sander
dc.contributor.author.fl_str_mv Zanotelli, Rosana Medina
contributor_str_mv Callejas Bedregal, Benjamín René
Reiser, Renata Hax Sander
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação
n-dimensional fuzzy sets
n-dimensional fuzzy implications
n-dimensional intervals
n-dimensional (S;N)-implications
n-dimensional QL-implications
n-dimensional R-implications
Approximate reasoning
Conjuntos fuzzy n-dimensionais
Implicações fuzzy n-dimensionais
Intervalos n-dimensionais
(S;N)-implicações n-dimensionais
QL-implicações n-dimensionais
R-implicações n-dimensionais
Raciocínio aproximado
dc.subject.por.fl_str_mv Computação
n-dimensional fuzzy sets
n-dimensional fuzzy implications
n-dimensional intervals
n-dimensional (S;N)-implications
n-dimensional QL-implications
n-dimensional R-implications
Approximate reasoning
Conjuntos fuzzy n-dimensionais
Implicações fuzzy n-dimensionais
Intervalos n-dimensionais
(S;N)-implicações n-dimensionais
QL-implicações n-dimensionais
R-implicações n-dimensionais
Raciocínio aproximado
description The n-dimensional fuzzy logic (n-DFL) is an extension of the fuzzy logic (FL) as old as hesitant fuzzy sets and less exploited, motivating new investigations, and promoting results to consolidate this research area. The study of n-DFL contributes to overcome the insufficiency of traditional fuzzy logic in modeling imperfect and imprecise information coming from different opinions of experts. Moreover, the possibility to model repeated and ordered degrees of membership in the n-dimensional fuzzy sets is considered a consolidated strategy in applied technologies including areas as pattern recognition, image processing, data mining and mathematical morphology. This large field of applications motivate the studies developed in this work. Based on representability of n-dimensional fuzzy connectives, we are able to extend relevant theoretical results from fuzzy connectives to n-dimensional fuzzy approach. In particular, this proposal introduces the study of n-dimensional fuzzy implications (n-DI) following distinct approaches: (i) analytical studies, defining n-DI, presenting the most desirable properties as neutrality, ordering, (contra-)symmetry, exchange and identity principles, and also discussing their interrelationships and exemplifications; (ii) algebraic aspects mainly related to left- and right-continuity of representable n-dimensional fuzzy t-norms and the generation of n-DI from existing fuzzy implications; (iii) n-dimensional approach of fuzzy implication classes explicitly represented by fuzzy connectives, as (S;N)-implications and QL-implications; (iv) prospective studies of n-dimensional R-implications (n-DRI), analyzing extended conditions to verify the residuation principle and their characterization based on n-dimensional t-norms and n-DI; (v) constructive method obtaining n-DRI based on n-dimensional aggregation operators, presenting an exemplification in the solution of a problem involving CIM-MCDM, based on Łukasiewicz n-DRI; and also including (vi) an introductory study considering an n-DI in modeling approximate reasoning of inference schemes, dealing with the effecting role of such connectives in based-rule fuzzy systems. In addition, taking into account the action of automorphism and fuzzy negations on Ln(U), conjugate and dual operators of n-DI can be respectively obtained, preserving algebraic and analytical properties.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-07-24T23:44:16Z
dc.date.available.fl_str_mv 2020-07-24T23:44:16Z
dc.date.issued.fl_str_mv 2020-03-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ZANOTELLI, Rosana Medina. n-Dimensional Fuzzy Implications: Analytical, Algebraic and Applicational Approaches. Advisor: Renata Hax Sander Reiser. 2020. 117 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2020.
dc.identifier.uri.fl_str_mv http://guaiaca.ufpel.edu.br/handle/prefix/6279
identifier_str_mv ZANOTELLI, Rosana Medina. n-Dimensional Fuzzy Implications: Analytical, Algebraic and Applicational Approaches. Advisor: Renata Hax Sander Reiser. 2020. 117 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2020.
url http://guaiaca.ufpel.edu.br/handle/prefix/6279
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pelotas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Computação
dc.publisher.initials.fl_str_mv UFPel
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Desenvolvimento Tecnológico
publisher.none.fl_str_mv Universidade Federal de Pelotas
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPel - Guaiaca
instname:Universidade Federal de Pelotas (UFPEL)
instacron:UFPEL
instname_str Universidade Federal de Pelotas (UFPEL)
instacron_str UFPEL
institution UFPEL
reponame_str Repositório Institucional da UFPel - Guaiaca
collection Repositório Institucional da UFPel - Guaiaca
bitstream.url.fl_str_mv http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/6/Tese_Rosana_Medina_Zanotelli.pdf.txt
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/7/Tese_Rosana_Medina_Zanotelli.pdf.jpg
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/1/Tese_Rosana_Medina_Zanotelli.pdf
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/2/license_url
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/3/license_text
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/4/license_rdf
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6279/5/license.txt
bitstream.checksum.fl_str_mv f090524a184e3f5c82493a003d9a58a0
0920758a5a531df65714196ad4991e79
cb03b45ec339635abe56c3c8a42227ff
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
43cd690d6a359e86c1fe3d5b7cba0c9b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)
repository.mail.fl_str_mv rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br
_version_ 1856426246953500672