New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Macedo, Matheus de Souza Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Mecânica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/22093
Resumo: The long lasting demand for better turbulence models and the still prohibitively computational cost of high- delity uid dynamics simulations, like DNS and LES, have led to a rising interest in coupling available high- delity datasets and popular, yet poor, RANS simulations through Machine Learning techniques. These techniques use noble sources as training targets for predicting quantities to be propagated by RANS equations. Many of the recent advances used the Reynolds stress tensor as the target for these corrections. More recently, an alternate methodology used the divergence of the Reynolds stress, denominated the Reynolds Force Vector, computed indirectly by manipulating mean momentum balance, as the target for the Machine Learning techniques. An unexplored strategy in this e ort is to use transport equations for turbulent quantities fueled by Machine Learning predicted source terms. In this context, two new methodologies were proposed, one using a transport equation for the Reynolds Stress and another one using a transport equation for the Reynolds Force Vector. The combination of these transport equations along with the momentum balance and a pressure coupling formed two data-driven turbulence models. Neural Networks were trained using DNS data to predict the source terms of each equation. Subsequently, both proposed models were employed to correct the turbulent ow on a square-duct. Reasonable results were obtained by both datadriven turbulence models, consistently recovering the secondary ow on the duct, which was not present in the baseline simulations that used the κ - model. Results from both methods were compared with alternate strategies previously presented in literature.
id UFRJ_2ff6acb5e2d8eee3ba3a6b410bfa7658
oai_identifier_str oai:pantheon.ufrj.br:11422/22093
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vectorTurbulênciaAprendizado de máquinaOpenFOAMEngenharia MecânicaThe long lasting demand for better turbulence models and the still prohibitively computational cost of high- delity uid dynamics simulations, like DNS and LES, have led to a rising interest in coupling available high- delity datasets and popular, yet poor, RANS simulations through Machine Learning techniques. These techniques use noble sources as training targets for predicting quantities to be propagated by RANS equations. Many of the recent advances used the Reynolds stress tensor as the target for these corrections. More recently, an alternate methodology used the divergence of the Reynolds stress, denominated the Reynolds Force Vector, computed indirectly by manipulating mean momentum balance, as the target for the Machine Learning techniques. An unexplored strategy in this e ort is to use transport equations for turbulent quantities fueled by Machine Learning predicted source terms. In this context, two new methodologies were proposed, one using a transport equation for the Reynolds Stress and another one using a transport equation for the Reynolds Force Vector. The combination of these transport equations along with the momentum balance and a pressure coupling formed two data-driven turbulence models. Neural Networks were trained using DNS data to predict the source terms of each equation. Subsequently, both proposed models were employed to correct the turbulent ow on a square-duct. Reasonable results were obtained by both datadriven turbulence models, consistently recovering the secondary ow on the duct, which was not present in the baseline simulations that used the κ - model. Results from both methods were compared with alternate strategies previously presented in literature.A antiga demanda por melhores modelos de turbulência e o custo computacional ainda proibitivo de simulações de alta- delidade em dinâmica dos uidos, como DNS e LES, levaram ao crescente interesse em acoplar dados de simulações de alta- delidade com as populares, porém de cientes, simulações RANS, através de técnicas de Aprendizado de Máquina. Estas técnicas usam dados nobres como alvos para previsões de grandezas a serem propagadas pelas equações RANS. Muitos dos avanços recentes utilizaram o tensor de Reynolds como alvo destas correções. Mais recentemente, uma metodologia alternativa utilizou o divergente do tensor de Reynolds, denominado Vetor de Força de Reynolds, como alvo do Aprendizado de Máquina. Uma nova estratégia é o uso de equações de transporte de grandezas turbulentas contendo termos fonte previstos por Aprendizado de Máquina. Neste contexto, duas novas metodologias foram propostas, uma delas utilizando a equação de transporte do tensor de Reynolds e outra utilizando uma equação para o Vetor de Força de Reynolds. A combinação destas equações com o balanço de momento e um acoplamento com a pressão formou dois modelos de turbulência com base em dados. Redes Neurais foram treinadas utilizando dados DNS para prever os termos fonte de cada equação. Em seguida, os modelos foram usados para corrigir o escoamento turbulento em um duto de seção quadrada. Resultados razoáveis foram obtidos pelos dois modelos de turbulência, consistentemente recuperando o escoamento secundário no duto, que não existia nas simulações iniciais que utilizaram o modelo κ - . As duas metodologias foram também comparados com abordagens alternativas previamente apresentadas na literatura.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia MecânicaUFRJThompson, Roney Leonhttp://lattes.cnpq.br/ 2098972734034028Nieckele, Angela OurivioCastello, Daniel AlvesMacedo, Matheus de Souza Santos2023-11-16T23:05:48Z2023-12-21T03:00:38Z2020-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/22093enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:00:38Zoai:pantheon.ufrj.br:11422/22093Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:00:38Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector
title New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector
spellingShingle New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector
Macedo, Matheus de Souza Santos
Turbulência
Aprendizado de máquina
OpenFOAM
Engenharia Mecânica
title_short New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector
title_full New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector
title_fullStr New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector
title_full_unstemmed New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector
title_sort New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector
author Macedo, Matheus de Souza Santos
author_facet Macedo, Matheus de Souza Santos
author_role author
dc.contributor.none.fl_str_mv Thompson, Roney Leon
http://lattes.cnpq.br/ 2098972734034028
Nieckele, Angela Ourivio
Castello, Daniel Alves
dc.contributor.author.fl_str_mv Macedo, Matheus de Souza Santos
dc.subject.por.fl_str_mv Turbulência
Aprendizado de máquina
OpenFOAM
Engenharia Mecânica
topic Turbulência
Aprendizado de máquina
OpenFOAM
Engenharia Mecânica
description The long lasting demand for better turbulence models and the still prohibitively computational cost of high- delity uid dynamics simulations, like DNS and LES, have led to a rising interest in coupling available high- delity datasets and popular, yet poor, RANS simulations through Machine Learning techniques. These techniques use noble sources as training targets for predicting quantities to be propagated by RANS equations. Many of the recent advances used the Reynolds stress tensor as the target for these corrections. More recently, an alternate methodology used the divergence of the Reynolds stress, denominated the Reynolds Force Vector, computed indirectly by manipulating mean momentum balance, as the target for the Machine Learning techniques. An unexplored strategy in this e ort is to use transport equations for turbulent quantities fueled by Machine Learning predicted source terms. In this context, two new methodologies were proposed, one using a transport equation for the Reynolds Stress and another one using a transport equation for the Reynolds Force Vector. The combination of these transport equations along with the momentum balance and a pressure coupling formed two data-driven turbulence models. Neural Networks were trained using DNS data to predict the source terms of each equation. Subsequently, both proposed models were employed to correct the turbulent ow on a square-duct. Reasonable results were obtained by both datadriven turbulence models, consistently recovering the secondary ow on the duct, which was not present in the baseline simulations that used the κ - model. Results from both methods were compared with alternate strategies previously presented in literature.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
2023-11-16T23:05:48Z
2023-12-21T03:00:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/22093
url http://hdl.handle.net/11422/22093
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Mecânica
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Mecânica
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1831773731435839488