Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Vecchietti, Luiz Felipe Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/6486
Resumo: Due to the exponential growth in the use of computers, personal digital assistants and smartphones, the development of Text-to-Speech (TTS) systems have become highly demanded during the last years. An important part of these systems is the Text Analysis block, that converts the input text into linguistic specifications that are going to be used to generate the final speech waveform. The Natural Language Processing algorithms presented in this block are crucial to the quality of the speech generated by synthesizers. These algorithms are responsible for important tasks such as Grapheme-to-Phoneme Conversion, Syllabification and Stress Determination. For Brazilian Portuguese (BP), solutions for the algorithms presented in the Text Analysis block have been focused in rule-based approaches. These algorithms perform well for BP but have many disadvantages. On the other hand, there is still no research to evaluate and analyze the performance of data-driven approaches that reach state-of-the-art results for complex languages, such as English. So, in this work, we compare different data-driven approaches and rule-based approaches for NLP algorithms presented in a TTS system. Moreover, we propose, as a novel application, the use of Sequence-to-Sequence models as solution for the Syllabification and Stress Determination problems. As a brief summary of the results obtained, we show that data-driven algorithms can achieve state-of-the-art performance for the NLP algorithms presented in the Text Analysis block of a BP TTS system.
id UFRJ_93c9b973847ecf926319a7d5cc8c50c5
oai_identifier_str oai:pantheon.ufrj.br:11422/6486
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesisEngenharia elétricaProcessamento de linguagem naturalSíntese de falaCNPQ::ENGENHARIAS::ENGENHARIA ELETRICADue to the exponential growth in the use of computers, personal digital assistants and smartphones, the development of Text-to-Speech (TTS) systems have become highly demanded during the last years. An important part of these systems is the Text Analysis block, that converts the input text into linguistic specifications that are going to be used to generate the final speech waveform. The Natural Language Processing algorithms presented in this block are crucial to the quality of the speech generated by synthesizers. These algorithms are responsible for important tasks such as Grapheme-to-Phoneme Conversion, Syllabification and Stress Determination. For Brazilian Portuguese (BP), solutions for the algorithms presented in the Text Analysis block have been focused in rule-based approaches. These algorithms perform well for BP but have many disadvantages. On the other hand, there is still no research to evaluate and analyze the performance of data-driven approaches that reach state-of-the-art results for complex languages, such as English. So, in this work, we compare different data-driven approaches and rule-based approaches for NLP algorithms presented in a TTS system. Moreover, we propose, as a novel application, the use of Sequence-to-Sequence models as solution for the Syllabification and Stress Determination problems. As a brief summary of the results obtained, we show that data-driven algorithms can achieve state-of-the-art performance for the NLP algorithms presented in the Text Analysis block of a BP TTS system.Nos últimos anos, devido ao grande crescimento no uso de computadores, assistentes pessoais e smartphones, o desenvolvimento de sistemas capazes de converter texto em fala tem sido bastante demandado. O bloco de análise de texto, onde o texto de entrada é convertido em especificações linguísticas usadas para gerar a onda sonora final é uma parte importante destes sistemas. O desempenho dos algoritmos de Processamento de Linguagem Natural (NLP) presentes neste bloco é crucial para a qualidade dos sintetizadores de voz. Conversão Grafema-Fonema, separação silábica e determinação da sílaba tônica são algumas das tarefas executadas por estes algoritmos. Para o Português Brasileiro (BP), os algoritmos baseados em regras têm sido o foco na solução destes problemas. Estes algoritmos atingem bom desempenho para o BP, contudo apresentam diversas desvantagens. Por outro lado, ainda não há pesquisa no intuito de avaliar o desempenho de algoritmos data-driven, largamente utilizados para línguas complexas, como o inglês. Desta forma, expõe-se neste trabalho uma comparação entre diferentes técnicas data-driven e baseadas em regras para algoritmos de NLP utilizados em um sintetizador de voz. Além disso, propõe o uso de Sequence-to-Sequence models para a separação silábica e a determinação da tonicidade. Em suma, o presente trabalho demonstra que o uso de algoritmos data-driven atinge o estado-da-arte na performance dos algoritmos de Processamento de Linguagem Natural de um sintetizador de voz para o Português Brasileiro.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia ElétricaUFRJResende Junior, Fernando Gil Viannahttp://lattes.cnpq.br/6905921598086055Petraglia, Mariane RemboldAlcaim, AbrahamVecchietti, Luiz Felipe Santos2019-02-14T14:49:34Z2023-12-21T03:03:49Z2017-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/6486enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:03:49Zoai:pantheon.ufrj.br:11422/6486Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:03:49Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis
title Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis
spellingShingle Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis
Vecchietti, Luiz Felipe Santos
Engenharia elétrica
Processamento de linguagem natural
Síntese de fala
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis
title_full Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis
title_fullStr Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis
title_full_unstemmed Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis
title_sort Comparison between rule-based and data-driven natural language processing algorithms for Brazilian Portuguese speech synthesis
author Vecchietti, Luiz Felipe Santos
author_facet Vecchietti, Luiz Felipe Santos
author_role author
dc.contributor.none.fl_str_mv Resende Junior, Fernando Gil Vianna
http://lattes.cnpq.br/6905921598086055
Petraglia, Mariane Rembold
Alcaim, Abraham
dc.contributor.author.fl_str_mv Vecchietti, Luiz Felipe Santos
dc.subject.por.fl_str_mv Engenharia elétrica
Processamento de linguagem natural
Síntese de fala
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Engenharia elétrica
Processamento de linguagem natural
Síntese de fala
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description Due to the exponential growth in the use of computers, personal digital assistants and smartphones, the development of Text-to-Speech (TTS) systems have become highly demanded during the last years. An important part of these systems is the Text Analysis block, that converts the input text into linguistic specifications that are going to be used to generate the final speech waveform. The Natural Language Processing algorithms presented in this block are crucial to the quality of the speech generated by synthesizers. These algorithms are responsible for important tasks such as Grapheme-to-Phoneme Conversion, Syllabification and Stress Determination. For Brazilian Portuguese (BP), solutions for the algorithms presented in the Text Analysis block have been focused in rule-based approaches. These algorithms perform well for BP but have many disadvantages. On the other hand, there is still no research to evaluate and analyze the performance of data-driven approaches that reach state-of-the-art results for complex languages, such as English. So, in this work, we compare different data-driven approaches and rule-based approaches for NLP algorithms presented in a TTS system. Moreover, we propose, as a novel application, the use of Sequence-to-Sequence models as solution for the Syllabification and Stress Determination problems. As a brief summary of the results obtained, we show that data-driven algorithms can achieve state-of-the-art performance for the NLP algorithms presented in the Text Analysis block of a BP TTS system.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
2019-02-14T14:49:34Z
2023-12-21T03:03:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/6486
url http://hdl.handle.net/11422/6486
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1831773689754943488