Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço
| Ano de defesa: | 2012 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
BR UFRN Programa de Pós-Graduação em Engenharia Elétrica Automação e Sistemas; Engenharia de Computação; Telecomunicações |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufrn.br/jspui/handle/123456789/15449 |
Resumo: | Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification |
| id |
UFRN_4ac3fba18b71c54d8d0ee556dc567291 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/15449 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforçoAprendizado de máquina. Sistemas inteligentes. Classificação de padrões. Máquinas de comitê. Máquinas de vetor de suporte. Aprendizagem por reforçoMachine learning. Intelligent systems. Pattern classification. Committee machines. Support vector machines. Reinforcement learningCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAReinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classificationA aprendizagem por reforço é uma técnica de aprendizado de máquina que, embora já tenha encontrado uma grande quantidade de aplicações, talvez ainda não tenha alcançado seu pleno potencial. Uma das possibilidades que não foi devidamente testada até hoje foi a utilização da aprendizagem por reforço em conjunto com outros métodos para a solução de problemas de classificação de padrões. É bem documentada na literatura a problemática que ensembles de máquinas de vetor de suporte encontram em termos de capacidade de generalização. Algoritmos como Adaboost não lidam apropriadamente com os desequilíbrios que podem surgir nessas situações. Várias alternativas já foram propostas, com margens variadas de sucesso. Esta dissertação apresenta uma nova abordagem para a construção de comitês de máquinas de vetor de suporte. O algoritmo apresentado combina o algoritmo Adaboost com uma camada de aprendizagem por reforço, para ajustar parâmetros do comitê evitando que desequilíbrios nos classificadores componentes do comitê prejudiquem o desempenho de generalização da hipótese final. Foram efetuadas comparações de comitês com e sem essa camada adicional de aprendizagem por reforço, testando conjuntos de dados benchmarks amplamente conhecidos na área de classificação de padrõesUniversidade Federal do Rio Grande do NorteBRUFRNPrograma de Pós-Graduação em Engenharia ElétricaAutomação e Sistemas; Engenharia de Computação; TelecomunicaçõesMelo, Jorge Dantas dehttp://lattes.cnpq.br/8241420490601784http://lattes.cnpq.br/7325007451912598Dória Neto, Adrião Duartehttp://lattes.cnpq.br/1987295209521433Martins, Allan de Medeiroshttp://lattes.cnpq.br/4402694969508077Lima Júnior, Francisco Chagas deLima, Naiyan Hari Cândido2014-12-17T14:56:07Z2013-04-182014-12-17T14:56:07Z2012-08-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfLIMA, Naiyan Hari Cândido. Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço. 2012. 75 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012.https://repositorio.ufrn.br/jspui/handle/123456789/15449porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2017-10-31T18:56:46Zoai:repositorio.ufrn.br:123456789/15449Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2017-10-31T18:56:46Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço |
| title |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço |
| spellingShingle |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço Lima, Naiyan Hari Cândido Aprendizado de máquina. Sistemas inteligentes. Classificação de padrões. Máquinas de comitê. Máquinas de vetor de suporte. Aprendizagem por reforço Machine learning. Intelligent systems. Pattern classification. Committee machines. Support vector machines. Reinforcement learning CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| title_short |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço |
| title_full |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço |
| title_fullStr |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço |
| title_full_unstemmed |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço |
| title_sort |
Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço |
| author |
Lima, Naiyan Hari Cândido |
| author_facet |
Lima, Naiyan Hari Cândido |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Melo, Jorge Dantas de http://lattes.cnpq.br/8241420490601784 http://lattes.cnpq.br/7325007451912598 Dória Neto, Adrião Duarte http://lattes.cnpq.br/1987295209521433 Martins, Allan de Medeiros http://lattes.cnpq.br/4402694969508077 Lima Júnior, Francisco Chagas de |
| dc.contributor.author.fl_str_mv |
Lima, Naiyan Hari Cândido |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina. Sistemas inteligentes. Classificação de padrões. Máquinas de comitê. Máquinas de vetor de suporte. Aprendizagem por reforço Machine learning. Intelligent systems. Pattern classification. Committee machines. Support vector machines. Reinforcement learning CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
Aprendizado de máquina. Sistemas inteligentes. Classificação de padrões. Máquinas de comitê. Máquinas de vetor de suporte. Aprendizagem por reforço Machine learning. Intelligent systems. Pattern classification. Committee machines. Support vector machines. Reinforcement learning CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| description |
Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-08-13 2013-04-18 2014-12-17T14:56:07Z 2014-12-17T14:56:07Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
LIMA, Naiyan Hari Cândido. Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço. 2012. 75 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012. https://repositorio.ufrn.br/jspui/handle/123456789/15449 |
| identifier_str_mv |
LIMA, Naiyan Hari Cândido. Classificação de padrões através de um comitê de máquinas aprimorado por aprendizagem por reforço. 2012. 75 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012. |
| url |
https://repositorio.ufrn.br/jspui/handle/123456789/15449 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte BR UFRN Programa de Pós-Graduação em Engenharia Elétrica Automação e Sistemas; Engenharia de Computação; Telecomunicações |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte BR UFRN Programa de Pós-Graduação em Engenharia Elétrica Automação e Sistemas; Engenharia de Computação; Telecomunicações |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1855758877061021696 |