Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
| Ano de defesa: | 2012 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
BR UFRN Programa de Pós-Graduação em Engenharia Elétrica Automação e Sistemas; Engenharia de Computação; Telecomunicações |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufrn.br/jspui/handle/123456789/15447 |
Resumo: | Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections |
| id |
UFRN_54c7a687568644782798e83aaafaa4b7 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/15447 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicoreComputação paralela. Multilayer perceptron. OpenMPParallel computing. Multilayer perceptron. OpenMPCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAArtificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connectionsCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorAs redes neurais artificiais geralmente são aplicadas à solução de problemas comple- xos. Em problemas com maior complexidade, ao aumentar o número de camadas e de neurônios, é possível conseguir uma maior eficiência funcional, porém, isto acarreta em um maior esforço computacional. O tempo de resposta é um fator importante na decisão de usá-las em determinados sistemas. Muitos defendem que o maior custo computacional está na fase de treinamento. Porém, esta fase é realizada apenas uma única vez. Já trei- nada, é necessário usar os recursos computacionais existentes de forma eficiente. Diante da era multicore esse problema se resume à utilização eficiente de todos os núcleos de processamento disponíveis. No entanto, é necessário considerar a sobrecarga existente na computação paralela. Neste sentido, este trabalho propõe uma estrutura modular que é mais adequada para as implementações paralelas. Propõe-se paralelizar o processo feed- forward (passo para frente) de uma RNA do tipo MLP, implementada com o OpenMP em uma arquitetura computacional de memória compartilhada. A investigação dar-se-á com a realização de testes e análises dos tempos de execução. A aceleração, a eficiência e a es- calabilidade são analisados. Na proposta apresentada é possível perceber que, ao diminuir o número de conexões entre os neurônios remotos, o tempo de resposta da rede diminui e por consequência diminui também o tempo total de execução. O tempo necessário para comunicação e sincronismo está diretamente ligado ao número de neurônios remotos da rede, sendo então, necessário observar sua melhor distribuiçãoUniversidade Federal do Rio Grande do NorteBRUFRNPrograma de Pós-Graduação em Engenharia ElétricaAutomação e Sistemas; Engenharia de Computação; TelecomunicaçõesSouza, Samuel Xavier dehttp://lattes.cnpq.br/5639935429698099http://lattes.cnpq.br/9892239670106361Martins, Allan de Medeiroshttp://lattes.cnpq.br/4402694969508077Lopes, Danniel CavalvanteSouza, Francisco Ary Alves de2014-12-17T14:56:07Z2013-04-182014-12-17T14:56:07Z2012-08-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfSOUZA, Francisco Ary Alves de. Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore. 2012. 62 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012.https://repositorio.ufrn.br/jspui/handle/123456789/15447porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2017-10-31T18:55:41Zoai:repositorio.ufrn.br:123456789/15447Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2017-10-31T18:55:41Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore |
| title |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore |
| spellingShingle |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore Souza, Francisco Ary Alves de Computação paralela. Multilayer perceptron. OpenMP Parallel computing. Multilayer perceptron. OpenMP CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| title_short |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore |
| title_full |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore |
| title_fullStr |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore |
| title_full_unstemmed |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore |
| title_sort |
Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore |
| author |
Souza, Francisco Ary Alves de |
| author_facet |
Souza, Francisco Ary Alves de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Souza, Samuel Xavier de http://lattes.cnpq.br/5639935429698099 http://lattes.cnpq.br/9892239670106361 Martins, Allan de Medeiros http://lattes.cnpq.br/4402694969508077 Lopes, Danniel Cavalvante |
| dc.contributor.author.fl_str_mv |
Souza, Francisco Ary Alves de |
| dc.subject.por.fl_str_mv |
Computação paralela. Multilayer perceptron. OpenMP Parallel computing. Multilayer perceptron. OpenMP CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
Computação paralela. Multilayer perceptron. OpenMP Parallel computing. Multilayer perceptron. OpenMP CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| description |
Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-08-07 2013-04-18 2014-12-17T14:56:07Z 2014-12-17T14:56:07Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
SOUZA, Francisco Ary Alves de. Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore. 2012. 62 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012. https://repositorio.ufrn.br/jspui/handle/123456789/15447 |
| identifier_str_mv |
SOUZA, Francisco Ary Alves de. Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore. 2012. 62 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012. |
| url |
https://repositorio.ufrn.br/jspui/handle/123456789/15447 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte BR UFRN Programa de Pós-Graduação em Engenharia Elétrica Automação e Sistemas; Engenharia de Computação; Telecomunicações |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte BR UFRN Programa de Pós-Graduação em Engenharia Elétrica Automação e Sistemas; Engenharia de Computação; Telecomunicações |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1855758902043344896 |