Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Souza, Francisco Ary Alves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
BR
UFRN
Programa de Pós-Graduação em Engenharia Elétrica
Automação e Sistemas; Engenharia de Computação; Telecomunicações
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/15447
Resumo: Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections
id UFRN_54c7a687568644782798e83aaafaa4b7
oai_identifier_str oai:repositorio.ufrn.br:123456789/15447
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicoreComputação paralela. Multilayer perceptron. OpenMPParallel computing. Multilayer perceptron. OpenMPCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAArtificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connectionsCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorAs redes neurais artificiais geralmente são aplicadas à solução de problemas comple- xos. Em problemas com maior complexidade, ao aumentar o número de camadas e de neurônios, é possível conseguir uma maior eficiência funcional, porém, isto acarreta em um maior esforço computacional. O tempo de resposta é um fator importante na decisão de usá-las em determinados sistemas. Muitos defendem que o maior custo computacional está na fase de treinamento. Porém, esta fase é realizada apenas uma única vez. Já trei- nada, é necessário usar os recursos computacionais existentes de forma eficiente. Diante da era multicore esse problema se resume à utilização eficiente de todos os núcleos de processamento disponíveis. No entanto, é necessário considerar a sobrecarga existente na computação paralela. Neste sentido, este trabalho propõe uma estrutura modular que é mais adequada para as implementações paralelas. Propõe-se paralelizar o processo feed- forward (passo para frente) de uma RNA do tipo MLP, implementada com o OpenMP em uma arquitetura computacional de memória compartilhada. A investigação dar-se-á com a realização de testes e análises dos tempos de execução. A aceleração, a eficiência e a es- calabilidade são analisados. Na proposta apresentada é possível perceber que, ao diminuir o número de conexões entre os neurônios remotos, o tempo de resposta da rede diminui e por consequência diminui também o tempo total de execução. O tempo necessário para comunicação e sincronismo está diretamente ligado ao número de neurônios remotos da rede, sendo então, necessário observar sua melhor distribuiçãoUniversidade Federal do Rio Grande do NorteBRUFRNPrograma de Pós-Graduação em Engenharia ElétricaAutomação e Sistemas; Engenharia de Computação; TelecomunicaçõesSouza, Samuel Xavier dehttp://lattes.cnpq.br/5639935429698099http://lattes.cnpq.br/9892239670106361Martins, Allan de Medeiroshttp://lattes.cnpq.br/4402694969508077Lopes, Danniel CavalvanteSouza, Francisco Ary Alves de2014-12-17T14:56:07Z2013-04-182014-12-17T14:56:07Z2012-08-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfSOUZA, Francisco Ary Alves de. Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore. 2012. 62 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012.https://repositorio.ufrn.br/jspui/handle/123456789/15447porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2017-10-31T18:55:41Zoai:repositorio.ufrn.br:123456789/15447Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2017-10-31T18:55:41Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
title Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
spellingShingle Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
Souza, Francisco Ary Alves de
Computação paralela. Multilayer perceptron. OpenMP
Parallel computing. Multilayer perceptron. OpenMP
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
title_full Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
title_fullStr Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
title_full_unstemmed Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
title_sort Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore
author Souza, Francisco Ary Alves de
author_facet Souza, Francisco Ary Alves de
author_role author
dc.contributor.none.fl_str_mv Souza, Samuel Xavier de

http://lattes.cnpq.br/5639935429698099

http://lattes.cnpq.br/9892239670106361
Martins, Allan de Medeiros

http://lattes.cnpq.br/4402694969508077
Lopes, Danniel Cavalvante

dc.contributor.author.fl_str_mv Souza, Francisco Ary Alves de
dc.subject.por.fl_str_mv Computação paralela. Multilayer perceptron. OpenMP
Parallel computing. Multilayer perceptron. OpenMP
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Computação paralela. Multilayer perceptron. OpenMP
Parallel computing. Multilayer perceptron. OpenMP
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections
publishDate 2012
dc.date.none.fl_str_mv 2012-08-07
2013-04-18
2014-12-17T14:56:07Z
2014-12-17T14:56:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUZA, Francisco Ary Alves de. Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore. 2012. 62 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
https://repositorio.ufrn.br/jspui/handle/123456789/15447
identifier_str_mv SOUZA, Francisco Ary Alves de. Análise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore. 2012. 62 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012.
url https://repositorio.ufrn.br/jspui/handle/123456789/15447
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
BR
UFRN
Programa de Pós-Graduação em Engenharia Elétrica
Automação e Sistemas; Engenharia de Computação; Telecomunicações
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
BR
UFRN
Programa de Pós-Graduação em Engenharia Elétrica
Automação e Sistemas; Engenharia de Computação; Telecomunicações
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758902043344896