Exportação concluída — 

Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Nascimento, Tuany Mariah Lima do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/46791
Resumo: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
id UFRN_7a00dda81e5b32a7d0f6ec59f8372b0a
oai_identifier_str oai:repositorio.ufrn.br:123456789/46791
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and BrazilFake NewsSemi-Supervised LearningCOVID-19Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESFake News has been a big problem for society for a long time. It has been magnified, reaching worldwide proportions, mainly with the growth of social networks and instant chat platforms where any user can quickly interact with news, either by sharing, through likes and retweets or presenting hers/his opinion on the topic. Since this is a very fast phenomenon, it became humanly impossible to manually identify and highlight any fake news. Therefore, the search for automatic solutions for fake news identification, mainly using machine learning models, has grown a lot in recent times, due to the variety of topics as well as the variety of fake news propagated. Most solutions focus on supervised learning models, however, in some datasets, there is an absence of labels for most of the instances. For this, the literature presents the use of semi-supervised learning algorithms which are able to learn from a few labeled data. Thus, this work will investigate the use of semi-supervised learning models for the detection of fake news, using as a case study the outbreak of the Sars-CoV-2 virus, the COVID-19 pandemic. Our results have shown that we have an interesting methodology which can be used to built a new social media dataset and automatic label the samples using semi-supervised learning models. We also have as an important contribution a new fake news dataset.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃOAbreu, Marjory Cristiany da Costahttp://lattes.cnpq.br/2234040548103596Oliveira, Laura Emmanuella Alves dos Santos Santana de05069886436http://lattes.cnpq.br/8996581733787436Cavalcante, Everton Ranielly de Sousahttp://lattes.cnpq.br/5065548216266121Souza Neto, Placido Antônio dehttp://lattes.cnpq.br/3641504724164977Nascimento, Tuany Mariah Lima do2022-04-05T00:00:23Z2022-04-05T00:00:23Z2022-01-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfNASCIMENTO, Tuany Mariah Lima do. Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil. 2022. 54f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.https://repositorio.ufrn.br/handle/123456789/46791info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2022-05-02T16:02:17Zoai:repositorio.ufrn.br:123456789/46791Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2022-05-02T16:02:17Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil
title Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil
spellingShingle Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil
Nascimento, Tuany Mariah Lima do
Fake News
Semi-Supervised Learning
COVID-19
title_short Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil
title_full Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil
title_fullStr Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil
title_full_unstemmed Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil
title_sort Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil
author Nascimento, Tuany Mariah Lima do
author_facet Nascimento, Tuany Mariah Lima do
author_role author
dc.contributor.none.fl_str_mv Abreu, Marjory Cristiany da Costa
http://lattes.cnpq.br/2234040548103596
Oliveira, Laura Emmanuella Alves dos Santos Santana de
05069886436
http://lattes.cnpq.br/8996581733787436
Cavalcante, Everton Ranielly de Sousa
http://lattes.cnpq.br/5065548216266121
Souza Neto, Placido Antônio de
http://lattes.cnpq.br/3641504724164977
dc.contributor.author.fl_str_mv Nascimento, Tuany Mariah Lima do
dc.subject.por.fl_str_mv Fake News
Semi-Supervised Learning
COVID-19
topic Fake News
Semi-Supervised Learning
COVID-19
description Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
publishDate 2022
dc.date.none.fl_str_mv 2022-04-05T00:00:23Z
2022-04-05T00:00:23Z
2022-01-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv NASCIMENTO, Tuany Mariah Lima do. Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil. 2022. 54f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.
https://repositorio.ufrn.br/handle/123456789/46791
identifier_str_mv NASCIMENTO, Tuany Mariah Lima do. Using semi-supervised learning models for creating a new fake news dataset from Twitter posts: a case study on Covid-19 in the UK and Brazil. 2022. 54f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.
url https://repositorio.ufrn.br/handle/123456789/46791
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758717123821568