Exportação concluída — 

Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Fernanda Maria de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/30609
Resumo: O óleo diesel é um dos principais derivados do petróleo, fundamental para o setor rodoviário brasileiro, no transporte de passageiros e de cargas. A adulteração desse combustível, com produtos de baixo custo, como óleos vegetais e solventes petroquímicos, é preocupante, pois traz inúmeros prejuízos, tanto financeiros, quanto ambientais. Para uma rápida identificação destas alterações nos combustíveis, é necessário que ocorra o desenvolvimento de métodos mais práticos e eficientes aplicados no monitoramento da qualidade do diesel e até a detecção e quantificação de adulterantes. Este trabalho de pesquisa foi desenvolvido com o objetivo de contribuir com o repertório de técnicas analíticas aplicadas para o monitoramento do diesel, utilizando métodos espectroscópicos associados a técnicas quimiométricas. Esta pesquisa foi conduzida usando dois tipos de abordagens, o Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) e Partial Least Squares (PLS), para a identificação e quantificação de óleos vegetais residuais, adicionados, como adulterantes, no óleo diesel comercializado, e as Artificial Neural Networks (ANNs) para a determinação de parâmetros de especificação do óleo diesel. Na identificação e quantificação do óleo residual adulterante, 16 amostras comerciais de diesel contendo 8% (v/v) de biodiesel e 10 mg de enxofre/kg (denominado S10B8), foram misturas com o óleo residual de fritura, em diversas concentrações volumétricas (1 - 60%), e em seguida, determinadas suas propriedades físico-químicas especificadas pela Agência Nacional de Petróleo Gás Natural e Biocombustível - ANP (massa específica, viscosidade cinemática, ponto de fulgor e destilação atmosférica), de acordo com normas da American Society for Testing and Materials (ASTM). Paralelamente, foram obtidos dados de infravermelho médio com transformada de Fourier, FT-MIR, e infravermelho próximo, FT-NIR, para criação dos modelos de calibração multivariada. Os dois modelos criados (MCR-NIR, MCR-MIR, PLS-NIR e PLS-MIR), conseguiram prever com precisão, não apresentando diferença estatística entre as concentrações estimadas de adulterante e os valores de referência, sendo válidos para um nível de confiança de 95%. Além disso, o MCR-ALS foi capaz de recuperar o perfil espectral puro relacionado dos combustíveis e adulterantes. Para a modelagem das ANNs, foram utilizadas 162 amostras de diesel de diferentes composições (50, 500 e 1800 mg kg-1), revelando assim a variedade de combustível no mercado brasileiro, que foram analisadas de acordo com metodologias ASTM preconizadas pela ANP, com um total de 810 ensaios. As ANNs foram utilizadas para predizer, não simultaneamente, ponto de fulgor, índice de cetano e teor de enxofre (S1800) de misturas de diesel com 7% (v/v) de biodiesel, usando curvas de destilação (ASTM D86), massa especifica (ASTM D405), índice de cetano (ASTM D4737), ponto de fulgor (ASTM D93) e teor de enxofre (ASTM D4294), como dado de entrada para modelagem. Os baixos valores de erros obtidos em comparação com outros modelos quimiométricos descritos na literatura e coeficientes de alta correlação entre os valores de referência e preditos mostraram que as ANNs eram eficientes na determinação do ponto de fulgor, número de cetano/índice de cetano e teor de enxofre (1800 mg kg-1). Além disso, o método proposto apresenta vantagens como baixo custo e fácil implementação, pois utiliza dados do próprio monitoramento de rotina realizado para avaliar o controle de qualidade do diesel.
id UFRN_7ea30c9ab005f230a955d66e43145584
oai_identifier_str oai:repositorio.ufrn.br:123456789/30609
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo dieselMonitoramentoÓleo DieselQuimiometriaCalibração multivariada e Redes neurais artificiais.O óleo diesel é um dos principais derivados do petróleo, fundamental para o setor rodoviário brasileiro, no transporte de passageiros e de cargas. A adulteração desse combustível, com produtos de baixo custo, como óleos vegetais e solventes petroquímicos, é preocupante, pois traz inúmeros prejuízos, tanto financeiros, quanto ambientais. Para uma rápida identificação destas alterações nos combustíveis, é necessário que ocorra o desenvolvimento de métodos mais práticos e eficientes aplicados no monitoramento da qualidade do diesel e até a detecção e quantificação de adulterantes. Este trabalho de pesquisa foi desenvolvido com o objetivo de contribuir com o repertório de técnicas analíticas aplicadas para o monitoramento do diesel, utilizando métodos espectroscópicos associados a técnicas quimiométricas. Esta pesquisa foi conduzida usando dois tipos de abordagens, o Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) e Partial Least Squares (PLS), para a identificação e quantificação de óleos vegetais residuais, adicionados, como adulterantes, no óleo diesel comercializado, e as Artificial Neural Networks (ANNs) para a determinação de parâmetros de especificação do óleo diesel. Na identificação e quantificação do óleo residual adulterante, 16 amostras comerciais de diesel contendo 8% (v/v) de biodiesel e 10 mg de enxofre/kg (denominado S10B8), foram misturas com o óleo residual de fritura, em diversas concentrações volumétricas (1 - 60%), e em seguida, determinadas suas propriedades físico-químicas especificadas pela Agência Nacional de Petróleo Gás Natural e Biocombustível - ANP (massa específica, viscosidade cinemática, ponto de fulgor e destilação atmosférica), de acordo com normas da American Society for Testing and Materials (ASTM). Paralelamente, foram obtidos dados de infravermelho médio com transformada de Fourier, FT-MIR, e infravermelho próximo, FT-NIR, para criação dos modelos de calibração multivariada. Os dois modelos criados (MCR-NIR, MCR-MIR, PLS-NIR e PLS-MIR), conseguiram prever com precisão, não apresentando diferença estatística entre as concentrações estimadas de adulterante e os valores de referência, sendo válidos para um nível de confiança de 95%. Além disso, o MCR-ALS foi capaz de recuperar o perfil espectral puro relacionado dos combustíveis e adulterantes. Para a modelagem das ANNs, foram utilizadas 162 amostras de diesel de diferentes composições (50, 500 e 1800 mg kg-1), revelando assim a variedade de combustível no mercado brasileiro, que foram analisadas de acordo com metodologias ASTM preconizadas pela ANP, com um total de 810 ensaios. As ANNs foram utilizadas para predizer, não simultaneamente, ponto de fulgor, índice de cetano e teor de enxofre (S1800) de misturas de diesel com 7% (v/v) de biodiesel, usando curvas de destilação (ASTM D86), massa especifica (ASTM D405), índice de cetano (ASTM D4737), ponto de fulgor (ASTM D93) e teor de enxofre (ASTM D4294), como dado de entrada para modelagem. Os baixos valores de erros obtidos em comparação com outros modelos quimiométricos descritos na literatura e coeficientes de alta correlação entre os valores de referência e preditos mostraram que as ANNs eram eficientes na determinação do ponto de fulgor, número de cetano/índice de cetano e teor de enxofre (1800 mg kg-1). Além disso, o método proposto apresenta vantagens como baixo custo e fácil implementação, pois utiliza dados do próprio monitoramento de rotina realizado para avaliar o controle de qualidade do diesel.O óleo diesel é um dos principais derivados do petróleo, fundamental para o setor rodoviário brasileiro, no transporte de passageiros e de cargas. A adulteração desse combustível, com produtos de baixo custo, como óleos vegetais e solventes petroquímicos, é preocupante, pois traz inúmeros prejuízos, tanto financeiros, quanto ambientais. Para uma rápida identificação destas alterações nos combustíveis, é necessário que ocorra o desenvolvimento de métodos mais práticos e eficientes aplicados no monitoramento da qualidade do diesel e até a detecção e quantificação de adulterantes. Este trabalho de pesquisa foi desenvolvido com o objetivo de contribuir com o repertório de técnicas analíticas aplicadas para o monitoramento do diesel, utilizando métodos espectroscópicos associados a técnicas quimiométricas. Esta pesquisa foi conduzida usando dois tipos de abordagens, o Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) e Partial Least Squares (PLS), para a identificação e quantificação de óleos vegetais residuais, adicionados, como adulterantes, no óleo diesel comercializado, e as Artificial Neural Networks (ANNs) para a determinação de parâmetros de especificação do óleo diesel. Na identificação e quantificação do óleo residual adulterante, 16 amostras comerciais de diesel contendo 8% (v/v) de biodiesel e 10 mg de enxofre/kg (denominado S10B8), foram misturas com o óleo residual de fritura, em diversas concentrações volumétricas (1 - 60%), e em seguida, determinadas suas propriedades físico-químicas especificadas pela Agência Nacional de Petróleo Gás Natural e Biocombustível - ANP (massa específica, viscosidade cinemática, ponto de fulgor e destilação atmosférica), de acordo com normas da American Society for Testing and Materials (ASTM). Paralelamente, foram obtidos dados de infravermelho médio com transformada de Fourier, FT-MIR, e infravermelho próximo, FT-NIR, para criação dos modelos de calibração multivariada. Os dois modelos criados (MCR-NIR, MCR-MIR, PLS-NIR e PLS-MIR), conseguiram prever com precisão, não apresentando diferença estatística entre as concentrações estimadas de adulterante e os valores de referência, sendo válidos para um nível de confiança de 95%. Além disso, o MCR-ALS foi capaz de recuperar o perfil espectral puro relacionado dos combustíveis e adulterantes. Para a modelagem das ANNs, foram utilizadas 162 amostras de diesel de diferentes composições (50, 500 e 1800 mg kg-1), revelando assim a variedade de combustível no mercado brasileiro, que foram analisadas de acordo com metodologias ASTM preconizadas pela ANP, com um total de 810 ensaios. As ANNs foram utilizadas para predizer, não simultaneamente, ponto de fulgor, índice de cetano e teor de enxofre (S1800) de misturas de diesel com 7% (v/v) de biodiesel, usando curvas de destilação (ASTM D86), massa especifica (ASTM D405), índice de cetano (ASTM D4737), ponto de fulgor (ASTM D93) e teor de enxofre (ASTM D4294), como dado de entrada para modelagem. Os baixos valores de erros obtidos em comparação com outros modelos quimiométricos descritos na literatura e coeficientes de alta correlação entre os valores de referência e preditos mostraram que as ANNs eram eficientes na determinação do ponto de fulgor, número de cetano/índice de cetano e teor de enxofre (1800 mg kg-1). Além disso, o método proposto apresenta vantagens como baixo custo e fácil implementação, pois utiliza dados do próprio monitoramento de rotina realizado para avaliar o controle de qualidade do diesel.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICASantos, Luciene da SilvaLima, Kassio Michell Gomes deSantos, Damilson Ferreira dosSousa, Joao Fernandes deFreitas, Júlio Cézar de OliveiraPimentel, Patricia MendoncaOliveira, Fernanda Maria de2020-11-20T14:21:04Z2020-11-20T14:21:04Z2019-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfOLIVEIRA, Fernanda Maria de. Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel. 2019. 126f. Tese (Doutorado Em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2019.https://repositorio.ufrn.br/handle/123456789/30609info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2020-11-22T07:54:01Zoai:repositorio.ufrn.br:123456789/30609Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2020-11-22T07:54:01Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel
title Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel
spellingShingle Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel
Oliveira, Fernanda Maria de
Monitoramento
Óleo Diesel
Quimiometria
Calibração multivariada e Redes neurais artificiais.
title_short Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel
title_full Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel
title_fullStr Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel
title_full_unstemmed Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel
title_sort Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel
author Oliveira, Fernanda Maria de
author_facet Oliveira, Fernanda Maria de
author_role author
dc.contributor.none.fl_str_mv Santos, Luciene da Silva


Lima, Kassio Michell Gomes de

Santos, Damilson Ferreira dos

Sousa, Joao Fernandes de

Freitas, Júlio Cézar de Oliveira

Pimentel, Patricia Mendonca

dc.contributor.author.fl_str_mv Oliveira, Fernanda Maria de
dc.subject.por.fl_str_mv Monitoramento
Óleo Diesel
Quimiometria
Calibração multivariada e Redes neurais artificiais.
topic Monitoramento
Óleo Diesel
Quimiometria
Calibração multivariada e Redes neurais artificiais.
description O óleo diesel é um dos principais derivados do petróleo, fundamental para o setor rodoviário brasileiro, no transporte de passageiros e de cargas. A adulteração desse combustível, com produtos de baixo custo, como óleos vegetais e solventes petroquímicos, é preocupante, pois traz inúmeros prejuízos, tanto financeiros, quanto ambientais. Para uma rápida identificação destas alterações nos combustíveis, é necessário que ocorra o desenvolvimento de métodos mais práticos e eficientes aplicados no monitoramento da qualidade do diesel e até a detecção e quantificação de adulterantes. Este trabalho de pesquisa foi desenvolvido com o objetivo de contribuir com o repertório de técnicas analíticas aplicadas para o monitoramento do diesel, utilizando métodos espectroscópicos associados a técnicas quimiométricas. Esta pesquisa foi conduzida usando dois tipos de abordagens, o Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) e Partial Least Squares (PLS), para a identificação e quantificação de óleos vegetais residuais, adicionados, como adulterantes, no óleo diesel comercializado, e as Artificial Neural Networks (ANNs) para a determinação de parâmetros de especificação do óleo diesel. Na identificação e quantificação do óleo residual adulterante, 16 amostras comerciais de diesel contendo 8% (v/v) de biodiesel e 10 mg de enxofre/kg (denominado S10B8), foram misturas com o óleo residual de fritura, em diversas concentrações volumétricas (1 - 60%), e em seguida, determinadas suas propriedades físico-químicas especificadas pela Agência Nacional de Petróleo Gás Natural e Biocombustível - ANP (massa específica, viscosidade cinemática, ponto de fulgor e destilação atmosférica), de acordo com normas da American Society for Testing and Materials (ASTM). Paralelamente, foram obtidos dados de infravermelho médio com transformada de Fourier, FT-MIR, e infravermelho próximo, FT-NIR, para criação dos modelos de calibração multivariada. Os dois modelos criados (MCR-NIR, MCR-MIR, PLS-NIR e PLS-MIR), conseguiram prever com precisão, não apresentando diferença estatística entre as concentrações estimadas de adulterante e os valores de referência, sendo válidos para um nível de confiança de 95%. Além disso, o MCR-ALS foi capaz de recuperar o perfil espectral puro relacionado dos combustíveis e adulterantes. Para a modelagem das ANNs, foram utilizadas 162 amostras de diesel de diferentes composições (50, 500 e 1800 mg kg-1), revelando assim a variedade de combustível no mercado brasileiro, que foram analisadas de acordo com metodologias ASTM preconizadas pela ANP, com um total de 810 ensaios. As ANNs foram utilizadas para predizer, não simultaneamente, ponto de fulgor, índice de cetano e teor de enxofre (S1800) de misturas de diesel com 7% (v/v) de biodiesel, usando curvas de destilação (ASTM D86), massa especifica (ASTM D405), índice de cetano (ASTM D4737), ponto de fulgor (ASTM D93) e teor de enxofre (ASTM D4294), como dado de entrada para modelagem. Os baixos valores de erros obtidos em comparação com outros modelos quimiométricos descritos na literatura e coeficientes de alta correlação entre os valores de referência e preditos mostraram que as ANNs eram eficientes na determinação do ponto de fulgor, número de cetano/índice de cetano e teor de enxofre (1800 mg kg-1). Além disso, o método proposto apresenta vantagens como baixo custo e fácil implementação, pois utiliza dados do próprio monitoramento de rotina realizado para avaliar o controle de qualidade do diesel.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-31
2020-11-20T14:21:04Z
2020-11-20T14:21:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv OLIVEIRA, Fernanda Maria de. Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel. 2019. 126f. Tese (Doutorado Em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2019.
https://repositorio.ufrn.br/handle/123456789/30609
identifier_str_mv OLIVEIRA, Fernanda Maria de. Ferramentas quimiométricas de calibração multivariada para monitoração da qualidade de óleo diesel. 2019. 126f. Tese (Doutorado Em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2019.
url https://repositorio.ufrn.br/handle/123456789/30609
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758759197933568