Exportação concluída — 

An unsupervised tinyML incremental learning approach for outlier processing and forecasting

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Andrade, Pedro Henrique Meira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/60905
Resumo: The Internet of Things (IoT) is a paradigm where computing and connectivity capabilities are embedded into objects, connecting them to the Internet. Acknowledged as a crucial and emerging technological area, IoT holds significant potential to enhance the quality of life, optimize industrial processes, and offer more applications to everyday objects. With the increasing number of IoT-connected devices, there arises a need for infrastructure to manage the vast volume of generated data. In this context, Edge Computing stands out by processing data close to its source, leaving only heavier processing tasks for central servers. Edge processing enables the development of optimized machine learning algorithms, known as Tiny Machine Learning (TinyML). By employing lightweight and optimized algorithms, TinyML offers advantages such as reduced latency, improved energy efficiency, and increased autonomy for devices operating in remote or isolated applications. In the field of TinyML, implementing machine learning techniques on resource-constrained devices like microcontrollers poses significant challenges, including outlier detection and correction. This work contributes to developing an unsupervised incremental learning algorithm for outlier processing within the context of TinyML. This innovative approach applies unsupervised machine learning for outlier detection and correction on resource-constrained devices, adapting to external variations over time. The algorithm addresses the problem of signal processing at the edge of IoT applications, enabling, for example, a smart meter to process events locally before sending data to the supervisory system. The solution was implemented and validated through simulations and tested on two different microcontrollers: the ATmega328P (Arduino) and the Espressif ESP32 (Freematics), confirming its feasibility and good performance. This work fills a gap in the literature by introducing a new approach for data processing on resource-limited devices, utilizing an incremental learning technique. The evaluation compared the results obtained on embedded systems with those obtained on computers using different programming languages and tools.
id UFRN_b3b742e161f40190e24799042b1a288d
oai_identifier_str oai:repositorio.ufrn.br:123456789/60905
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling An unsupervised tinyML incremental learning approach for outlier processing and forecastingTinyMLInternet of ThingsEdge ComputingIncremental LearningData StreamsOutliersCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe Internet of Things (IoT) is a paradigm where computing and connectivity capabilities are embedded into objects, connecting them to the Internet. Acknowledged as a crucial and emerging technological area, IoT holds significant potential to enhance the quality of life, optimize industrial processes, and offer more applications to everyday objects. With the increasing number of IoT-connected devices, there arises a need for infrastructure to manage the vast volume of generated data. In this context, Edge Computing stands out by processing data close to its source, leaving only heavier processing tasks for central servers. Edge processing enables the development of optimized machine learning algorithms, known as Tiny Machine Learning (TinyML). By employing lightweight and optimized algorithms, TinyML offers advantages such as reduced latency, improved energy efficiency, and increased autonomy for devices operating in remote or isolated applications. In the field of TinyML, implementing machine learning techniques on resource-constrained devices like microcontrollers poses significant challenges, including outlier detection and correction. This work contributes to developing an unsupervised incremental learning algorithm for outlier processing within the context of TinyML. This innovative approach applies unsupervised machine learning for outlier detection and correction on resource-constrained devices, adapting to external variations over time. The algorithm addresses the problem of signal processing at the edge of IoT applications, enabling, for example, a smart meter to process events locally before sending data to the supervisory system. The solution was implemented and validated through simulations and tested on two different microcontrollers: the ATmega328P (Arduino) and the Espressif ESP32 (Freematics), confirming its feasibility and good performance. This work fills a gap in the literature by introducing a new approach for data processing on resource-limited devices, utilizing an incremental learning technique. The evaluation compared the results obtained on embedded systems with those obtained on computers using different programming languages and tools.A Internet das Coisas (IoT) é um paradigma no qual as capacidades de computação e conectividade são incorporadas a objetos, conectando-os à Internet. Reconhecida como uma área tecnológica crucial e emergente, a IoT possui um potencial significativo para melhorar a qualidade de vida, otimizar processos industriais e ampliar as aplicações em objetos do cotidiano. Com o aumento do número de dispositivos IoT conectados, surge a necessidade de uma infraestrutura capaz de gerenciar o vasto volume de dados gerados. Nesse contexto, a Computação de Borda (Edge Computing) se destaca ao processar dados próximos à sua origem, deixando apenas as tarefas de processamento mais complexas para servidores centrais. O processamento na borda permite o desenvolvimento de algoritmos de aprendizado de máquina otimizados, conhecidos como Tiny Machine Learning (TinyML). Ao empregar algoritmos leves e otimizados, o conceito TinyML oferece vantagens como a redução da latência, a melhoria da eficiência energética e o aumento da autonomia de dispositivos operando em aplicações remotas ou isoladas. No campo TinyML, a implementação de técnicas de aprendizado de máquina em dispositivos com recursos limitados, como microcontroladores, apresenta desafios significativos, incluindo a detecção e correção de outliers. Este trabalho, portanto, contribui para o desenvolvimento de um algoritmo de aprendizado incremental não supervisionado para o processamento de outliers no contexto do TinyML. Essa abordagem inovadora aplica aprendizado de máquina não supervisionado para a detecção e correção de outliers em dispositivos com recursos limitados, adaptando-se a variações externas ao longo do tempo. O algoritmo aborda o problema do processamento de sinais na borda de aplicações IoT, permitindo, por exemplo, que um medidor inteligente processe eventos localmente antes de enviar dados ao sistema supervisório. A solução foi implementada e validada por meio de simulações e testada em dois microcontroladores diferentes: o ATmega328P (Arduino) e o Espressif ESP32 (Freematics), confirmando sua viabilidade e bom desempenho. Este trabalho preenche uma lacuna na literatura ao introduzir uma nova abordagem para o processamento de dados em dispositivos com recursos limitados, utilizando uma técnica de aprendizado incremental. A avaliação comparou os resultados obtidos em sistemas embarcados com aqueles obtidos em computadores, utilizando diferentes linguagens de programação e ferramentas.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOhttps://orcid.org/0000-0002-7729-9085http://lattes.cnpq.br/6695123583643731https://orcid.org/0000-0002-0116-6489http://lattes.cnpq.br/3608440944832201Oliveira, Luiz Affonso Henderson Guedes deBarros, Tiago Tavares LeiteCosta, Daniel GouveiaVillanueva, Juan Moisés MauricioAndrade, Pedro Henrique Meira de2024-12-17T23:06:45Z2024-12-17T23:06:45Z2024-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfANDRADE, Pedro Henrique Meira de. An unsupervised tinyML incremental learning approach for outlier processing and forecasting. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/60905info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2024-12-17T23:07:39Zoai:repositorio.ufrn.br:123456789/60905Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2024-12-17T23:07:39Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv An unsupervised tinyML incremental learning approach for outlier processing and forecasting
title An unsupervised tinyML incremental learning approach for outlier processing and forecasting
spellingShingle An unsupervised tinyML incremental learning approach for outlier processing and forecasting
Andrade, Pedro Henrique Meira de
TinyML
Internet of Things
Edge Computing
Incremental Learning
Data Streams
Outliers
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short An unsupervised tinyML incremental learning approach for outlier processing and forecasting
title_full An unsupervised tinyML incremental learning approach for outlier processing and forecasting
title_fullStr An unsupervised tinyML incremental learning approach for outlier processing and forecasting
title_full_unstemmed An unsupervised tinyML incremental learning approach for outlier processing and forecasting
title_sort An unsupervised tinyML incremental learning approach for outlier processing and forecasting
author Andrade, Pedro Henrique Meira de
author_facet Andrade, Pedro Henrique Meira de
author_role author
dc.contributor.none.fl_str_mv https://orcid.org/0000-0002-7729-9085
http://lattes.cnpq.br/6695123583643731
https://orcid.org/0000-0002-0116-6489
http://lattes.cnpq.br/3608440944832201
Oliveira, Luiz Affonso Henderson Guedes de
Barros, Tiago Tavares Leite
Costa, Daniel Gouveia
Villanueva, Juan Moisés Mauricio
dc.contributor.author.fl_str_mv Andrade, Pedro Henrique Meira de
dc.subject.por.fl_str_mv TinyML
Internet of Things
Edge Computing
Incremental Learning
Data Streams
Outliers
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic TinyML
Internet of Things
Edge Computing
Incremental Learning
Data Streams
Outliers
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description The Internet of Things (IoT) is a paradigm where computing and connectivity capabilities are embedded into objects, connecting them to the Internet. Acknowledged as a crucial and emerging technological area, IoT holds significant potential to enhance the quality of life, optimize industrial processes, and offer more applications to everyday objects. With the increasing number of IoT-connected devices, there arises a need for infrastructure to manage the vast volume of generated data. In this context, Edge Computing stands out by processing data close to its source, leaving only heavier processing tasks for central servers. Edge processing enables the development of optimized machine learning algorithms, known as Tiny Machine Learning (TinyML). By employing lightweight and optimized algorithms, TinyML offers advantages such as reduced latency, improved energy efficiency, and increased autonomy for devices operating in remote or isolated applications. In the field of TinyML, implementing machine learning techniques on resource-constrained devices like microcontrollers poses significant challenges, including outlier detection and correction. This work contributes to developing an unsupervised incremental learning algorithm for outlier processing within the context of TinyML. This innovative approach applies unsupervised machine learning for outlier detection and correction on resource-constrained devices, adapting to external variations over time. The algorithm addresses the problem of signal processing at the edge of IoT applications, enabling, for example, a smart meter to process events locally before sending data to the supervisory system. The solution was implemented and validated through simulations and tested on two different microcontrollers: the ATmega328P (Arduino) and the Espressif ESP32 (Freematics), confirming its feasibility and good performance. This work fills a gap in the literature by introducing a new approach for data processing on resource-limited devices, utilizing an incremental learning technique. The evaluation compared the results obtained on embedded systems with those obtained on computers using different programming languages and tools.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-17T23:06:45Z
2024-12-17T23:06:45Z
2024-08-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ANDRADE, Pedro Henrique Meira de. An unsupervised tinyML incremental learning approach for outlier processing and forecasting. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.
https://repositorio.ufrn.br/handle/123456789/60905
identifier_str_mv ANDRADE, Pedro Henrique Meira de. An unsupervised tinyML incremental learning approach for outlier processing and forecasting. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.
url https://repositorio.ufrn.br/handle/123456789/60905
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758843129102336