An unsupervised tinyML incremental learning approach for outlier processing and forecasting
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufrn.br/handle/123456789/60905 |
Resumo: | The Internet of Things (IoT) is a paradigm where computing and connectivity capabilities are embedded into objects, connecting them to the Internet. Acknowledged as a crucial and emerging technological area, IoT holds significant potential to enhance the quality of life, optimize industrial processes, and offer more applications to everyday objects. With the increasing number of IoT-connected devices, there arises a need for infrastructure to manage the vast volume of generated data. In this context, Edge Computing stands out by processing data close to its source, leaving only heavier processing tasks for central servers. Edge processing enables the development of optimized machine learning algorithms, known as Tiny Machine Learning (TinyML). By employing lightweight and optimized algorithms, TinyML offers advantages such as reduced latency, improved energy efficiency, and increased autonomy for devices operating in remote or isolated applications. In the field of TinyML, implementing machine learning techniques on resource-constrained devices like microcontrollers poses significant challenges, including outlier detection and correction. This work contributes to developing an unsupervised incremental learning algorithm for outlier processing within the context of TinyML. This innovative approach applies unsupervised machine learning for outlier detection and correction on resource-constrained devices, adapting to external variations over time. The algorithm addresses the problem of signal processing at the edge of IoT applications, enabling, for example, a smart meter to process events locally before sending data to the supervisory system. The solution was implemented and validated through simulations and tested on two different microcontrollers: the ATmega328P (Arduino) and the Espressif ESP32 (Freematics), confirming its feasibility and good performance. This work fills a gap in the literature by introducing a new approach for data processing on resource-limited devices, utilizing an incremental learning technique. The evaluation compared the results obtained on embedded systems with those obtained on computers using different programming languages and tools. |
| id |
UFRN_b3b742e161f40190e24799042b1a288d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/60905 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
An unsupervised tinyML incremental learning approach for outlier processing and forecastingTinyMLInternet of ThingsEdge ComputingIncremental LearningData StreamsOutliersCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe Internet of Things (IoT) is a paradigm where computing and connectivity capabilities are embedded into objects, connecting them to the Internet. Acknowledged as a crucial and emerging technological area, IoT holds significant potential to enhance the quality of life, optimize industrial processes, and offer more applications to everyday objects. With the increasing number of IoT-connected devices, there arises a need for infrastructure to manage the vast volume of generated data. In this context, Edge Computing stands out by processing data close to its source, leaving only heavier processing tasks for central servers. Edge processing enables the development of optimized machine learning algorithms, known as Tiny Machine Learning (TinyML). By employing lightweight and optimized algorithms, TinyML offers advantages such as reduced latency, improved energy efficiency, and increased autonomy for devices operating in remote or isolated applications. In the field of TinyML, implementing machine learning techniques on resource-constrained devices like microcontrollers poses significant challenges, including outlier detection and correction. This work contributes to developing an unsupervised incremental learning algorithm for outlier processing within the context of TinyML. This innovative approach applies unsupervised machine learning for outlier detection and correction on resource-constrained devices, adapting to external variations over time. The algorithm addresses the problem of signal processing at the edge of IoT applications, enabling, for example, a smart meter to process events locally before sending data to the supervisory system. The solution was implemented and validated through simulations and tested on two different microcontrollers: the ATmega328P (Arduino) and the Espressif ESP32 (Freematics), confirming its feasibility and good performance. This work fills a gap in the literature by introducing a new approach for data processing on resource-limited devices, utilizing an incremental learning technique. The evaluation compared the results obtained on embedded systems with those obtained on computers using different programming languages and tools.A Internet das Coisas (IoT) é um paradigma no qual as capacidades de computação e conectividade são incorporadas a objetos, conectando-os à Internet. Reconhecida como uma área tecnológica crucial e emergente, a IoT possui um potencial significativo para melhorar a qualidade de vida, otimizar processos industriais e ampliar as aplicações em objetos do cotidiano. Com o aumento do número de dispositivos IoT conectados, surge a necessidade de uma infraestrutura capaz de gerenciar o vasto volume de dados gerados. Nesse contexto, a Computação de Borda (Edge Computing) se destaca ao processar dados próximos à sua origem, deixando apenas as tarefas de processamento mais complexas para servidores centrais. O processamento na borda permite o desenvolvimento de algoritmos de aprendizado de máquina otimizados, conhecidos como Tiny Machine Learning (TinyML). Ao empregar algoritmos leves e otimizados, o conceito TinyML oferece vantagens como a redução da latência, a melhoria da eficiência energética e o aumento da autonomia de dispositivos operando em aplicações remotas ou isoladas. No campo TinyML, a implementação de técnicas de aprendizado de máquina em dispositivos com recursos limitados, como microcontroladores, apresenta desafios significativos, incluindo a detecção e correção de outliers. Este trabalho, portanto, contribui para o desenvolvimento de um algoritmo de aprendizado incremental não supervisionado para o processamento de outliers no contexto do TinyML. Essa abordagem inovadora aplica aprendizado de máquina não supervisionado para a detecção e correção de outliers em dispositivos com recursos limitados, adaptando-se a variações externas ao longo do tempo. O algoritmo aborda o problema do processamento de sinais na borda de aplicações IoT, permitindo, por exemplo, que um medidor inteligente processe eventos localmente antes de enviar dados ao sistema supervisório. A solução foi implementada e validada por meio de simulações e testada em dois microcontroladores diferentes: o ATmega328P (Arduino) e o Espressif ESP32 (Freematics), confirmando sua viabilidade e bom desempenho. Este trabalho preenche uma lacuna na literatura ao introduzir uma nova abordagem para o processamento de dados em dispositivos com recursos limitados, utilizando uma técnica de aprendizado incremental. A avaliação comparou os resultados obtidos em sistemas embarcados com aqueles obtidos em computadores, utilizando diferentes linguagens de programação e ferramentas.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOhttps://orcid.org/0000-0002-7729-9085http://lattes.cnpq.br/6695123583643731https://orcid.org/0000-0002-0116-6489http://lattes.cnpq.br/3608440944832201Oliveira, Luiz Affonso Henderson Guedes deBarros, Tiago Tavares LeiteCosta, Daniel GouveiaVillanueva, Juan Moisés MauricioAndrade, Pedro Henrique Meira de2024-12-17T23:06:45Z2024-12-17T23:06:45Z2024-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfANDRADE, Pedro Henrique Meira de. An unsupervised tinyML incremental learning approach for outlier processing and forecasting. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/60905info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2024-12-17T23:07:39Zoai:repositorio.ufrn.br:123456789/60905Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2024-12-17T23:07:39Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
An unsupervised tinyML incremental learning approach for outlier processing and forecasting |
| title |
An unsupervised tinyML incremental learning approach for outlier processing and forecasting |
| spellingShingle |
An unsupervised tinyML incremental learning approach for outlier processing and forecasting Andrade, Pedro Henrique Meira de TinyML Internet of Things Edge Computing Incremental Learning Data Streams Outliers CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| title_short |
An unsupervised tinyML incremental learning approach for outlier processing and forecasting |
| title_full |
An unsupervised tinyML incremental learning approach for outlier processing and forecasting |
| title_fullStr |
An unsupervised tinyML incremental learning approach for outlier processing and forecasting |
| title_full_unstemmed |
An unsupervised tinyML incremental learning approach for outlier processing and forecasting |
| title_sort |
An unsupervised tinyML incremental learning approach for outlier processing and forecasting |
| author |
Andrade, Pedro Henrique Meira de |
| author_facet |
Andrade, Pedro Henrique Meira de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0002-7729-9085 http://lattes.cnpq.br/6695123583643731 https://orcid.org/0000-0002-0116-6489 http://lattes.cnpq.br/3608440944832201 Oliveira, Luiz Affonso Henderson Guedes de Barros, Tiago Tavares Leite Costa, Daniel Gouveia Villanueva, Juan Moisés Mauricio |
| dc.contributor.author.fl_str_mv |
Andrade, Pedro Henrique Meira de |
| dc.subject.por.fl_str_mv |
TinyML Internet of Things Edge Computing Incremental Learning Data Streams Outliers CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
TinyML Internet of Things Edge Computing Incremental Learning Data Streams Outliers CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| description |
The Internet of Things (IoT) is a paradigm where computing and connectivity capabilities are embedded into objects, connecting them to the Internet. Acknowledged as a crucial and emerging technological area, IoT holds significant potential to enhance the quality of life, optimize industrial processes, and offer more applications to everyday objects. With the increasing number of IoT-connected devices, there arises a need for infrastructure to manage the vast volume of generated data. In this context, Edge Computing stands out by processing data close to its source, leaving only heavier processing tasks for central servers. Edge processing enables the development of optimized machine learning algorithms, known as Tiny Machine Learning (TinyML). By employing lightweight and optimized algorithms, TinyML offers advantages such as reduced latency, improved energy efficiency, and increased autonomy for devices operating in remote or isolated applications. In the field of TinyML, implementing machine learning techniques on resource-constrained devices like microcontrollers poses significant challenges, including outlier detection and correction. This work contributes to developing an unsupervised incremental learning algorithm for outlier processing within the context of TinyML. This innovative approach applies unsupervised machine learning for outlier detection and correction on resource-constrained devices, adapting to external variations over time. The algorithm addresses the problem of signal processing at the edge of IoT applications, enabling, for example, a smart meter to process events locally before sending data to the supervisory system. The solution was implemented and validated through simulations and tested on two different microcontrollers: the ATmega328P (Arduino) and the Espressif ESP32 (Freematics), confirming its feasibility and good performance. This work fills a gap in the literature by introducing a new approach for data processing on resource-limited devices, utilizing an incremental learning technique. The evaluation compared the results obtained on embedded systems with those obtained on computers using different programming languages and tools. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-17T23:06:45Z 2024-12-17T23:06:45Z 2024-08-30 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
ANDRADE, Pedro Henrique Meira de. An unsupervised tinyML incremental learning approach for outlier processing and forecasting. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024. https://repositorio.ufrn.br/handle/123456789/60905 |
| identifier_str_mv |
ANDRADE, Pedro Henrique Meira de. An unsupervised tinyML incremental learning approach for outlier processing and forecasting. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024. |
| url |
https://repositorio.ufrn.br/handle/123456789/60905 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1855758843129102336 |