Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufrn.br/handle/123456789/60732 |
Resumo: | Candida auris and Candida haemulonii are two emerging opportunistic pathogenic species that have been increasing in clinical cases worldwide in recent years. Differentiating some Candida species can be very laborious and needs very trained personnel, financially costly, tends to take day for a result and may not lead to results with very sensitivity and specificity, depending on their similarity. Thus, the objective of this study is to develop a new, faster and cost-effective methodology, compared with the standard techniques, for differentiating between C. auris and C. haemulonii based on near-infrared spectroscopy (NIR) and multivariate analysis. The strains C. auris CBS10913 and C. haemulonii CH02 were separated in 15 plates per species and three isolated colonies of each plate were selected for Fourier Transform Near-Infrared (FT-NIR) analysis, totaling 90 spectra. Subsequently, Principal Component Analysis (PCA) and variable selection algorithms, including the Successive Projections Algorithm (SPA) and Genetic Algorithm (GA) coupled with Linear Discriminant Analysis (LDA), were employed to discern distinctive patterns among the samples. The use of PCA, SPA and GA algorithms associated with LDA achieved 100% sensitivity and specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were essential in selecting the most important variables (infrared wavelengths) for the models, which could be attributed to the overtone and combination bands of axial and angular deformation generated by functional groups present in the cell wall structures of these organisms, as polysaccharides, peptides, proteins or molecules resulting from yeasts’ metabolism. These results show the high potential of combined FT-NIR and multivariate analysis techniques for the classification of Candida-like fungi, which can contribute to faster and more effective diagnosis and treatment of patients affected by these microorganisms. |
| id |
UFRN_badfdf017ae84a5225d740d2bd98d22b |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/60732 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemuloniiQuímicaFungos patogénicosEspectroscopia no infravermelho próximoAnálise multivariadaPCA-LDASPA-LDACNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICACandida auris and Candida haemulonii are two emerging opportunistic pathogenic species that have been increasing in clinical cases worldwide in recent years. Differentiating some Candida species can be very laborious and needs very trained personnel, financially costly, tends to take day for a result and may not lead to results with very sensitivity and specificity, depending on their similarity. Thus, the objective of this study is to develop a new, faster and cost-effective methodology, compared with the standard techniques, for differentiating between C. auris and C. haemulonii based on near-infrared spectroscopy (NIR) and multivariate analysis. The strains C. auris CBS10913 and C. haemulonii CH02 were separated in 15 plates per species and three isolated colonies of each plate were selected for Fourier Transform Near-Infrared (FT-NIR) analysis, totaling 90 spectra. Subsequently, Principal Component Analysis (PCA) and variable selection algorithms, including the Successive Projections Algorithm (SPA) and Genetic Algorithm (GA) coupled with Linear Discriminant Analysis (LDA), were employed to discern distinctive patterns among the samples. The use of PCA, SPA and GA algorithms associated with LDA achieved 100% sensitivity and specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were essential in selecting the most important variables (infrared wavelengths) for the models, which could be attributed to the overtone and combination bands of axial and angular deformation generated by functional groups present in the cell wall structures of these organisms, as polysaccharides, peptides, proteins or molecules resulting from yeasts’ metabolism. These results show the high potential of combined FT-NIR and multivariate analysis techniques for the classification of Candida-like fungi, which can contribute to faster and more effective diagnosis and treatment of patients affected by these microorganisms.Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqCandida auris e Candida haemulonii são duas espécies de fungos patogênicos oportunistas emergentes que têm aumentado em casos clínicos em todo o mundo nos últimos anos. Diferenciar algumas espécies de Candida pode ser muito laborioso e necessita de pessoal altamente treinado, financeiramente custoso, tende a levar dias para um resultado e não pode não ter elevados níveis de seletividade e especificidade, dependendo da sua similaridade. Assim, o objetivo deste trabalho é desenvolver uma nova metodologia, mais rápida e econômica comparada aos métodos tradicionais, para diferenciar entre C. auris e C. haemulonii com base em espectroscopia de infravermelho próximo (NIR) e análise multivariada. As cepas C. auris CBS10913 e C. haemulonii CH02 foram separadas em 15 placas por espécie e três colônias isoladas de cada placa foram selecionadas para análise por Espectroscopia no Infravermelho Próximo com Transformata de Fourier (FT-NIR), totalizando 90 espectros. Subsequentemente, Análise de Componentes Principais (PCA) e algoritmos de seleção de variáveis, incluindo o Algoritmo de Projeções Sucessivas (SPA) e Algoritmo Genético (GA) acoplados à Análise Discriminante Linear (LDA), foram empregados para discernir padrões distintos entre as amostras. O uso dos algoritmos PCA, SPA e GA associados à LDA atingiu 100% de sensibilidade e especificidade para as discriminações. Os algoritmos SPA-LDA e GALDA foram essenciais na seleção das variáveis mais importantes (comprimentos de onda do infravermelho) para os modelos, o que pode ser atribuído às bandas de overtone e combinação de deformações axiais e angulares geradas por grupos funcionais de moléculas presentes nas estruturas da parede celular destes organismos, como polissacarídeos, peptídeos, proteínas ou moléculas resultantes do metabolismo das leveduras. Esses resultados mostram o alto potencial das técnicas combinadas de FT-NIR e análise multivariada para a classificação de fungos do tipo Candida, o que pode contribuir para um diagnóstico e tratamento mais rápidos e eficazes dos pacientes afetados por esses microrganismos.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICALima, Kassio Michell Gomes dehttp://lattes.cnpq.br/6439050063732257https://orcid.org/0000-0002-3827-3800http://lattes.cnpq.br/6928918856031880Menezes, Ana Carolina de Oliveira NevesMorais, Camilo de Lelis Medeiros deSchinaider, Kássia Jéssica Galdino da SilvaNascimento, Ayrton Lucas Firmino do2024-12-03T23:53:49Z2024-12-03T23:53:49Z2024-09-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfNASCIMENTO, Ayrton Lucas Firmino do. Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii. Orientador: Dr. Kássio Michell Gomes de Lima. 2024. 59f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/60732info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2024-12-03T23:54:30Zoai:repositorio.ufrn.br:123456789/60732Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2024-12-03T23:54:30Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii |
| title |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii |
| spellingShingle |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii Nascimento, Ayrton Lucas Firmino do Química Fungos patogénicos Espectroscopia no infravermelho próximo Análise multivariada PCA-LDA SPA-LDA CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA |
| title_short |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii |
| title_full |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii |
| title_fullStr |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii |
| title_full_unstemmed |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii |
| title_sort |
Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii |
| author |
Nascimento, Ayrton Lucas Firmino do |
| author_facet |
Nascimento, Ayrton Lucas Firmino do |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Lima, Kassio Michell Gomes de http://lattes.cnpq.br/6439050063732257 https://orcid.org/0000-0002-3827-3800 http://lattes.cnpq.br/6928918856031880 Menezes, Ana Carolina de Oliveira Neves Morais, Camilo de Lelis Medeiros de Schinaider, Kássia Jéssica Galdino da Silva |
| dc.contributor.author.fl_str_mv |
Nascimento, Ayrton Lucas Firmino do |
| dc.subject.por.fl_str_mv |
Química Fungos patogénicos Espectroscopia no infravermelho próximo Análise multivariada PCA-LDA SPA-LDA CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA |
| topic |
Química Fungos patogénicos Espectroscopia no infravermelho próximo Análise multivariada PCA-LDA SPA-LDA CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA |
| description |
Candida auris and Candida haemulonii are two emerging opportunistic pathogenic species that have been increasing in clinical cases worldwide in recent years. Differentiating some Candida species can be very laborious and needs very trained personnel, financially costly, tends to take day for a result and may not lead to results with very sensitivity and specificity, depending on their similarity. Thus, the objective of this study is to develop a new, faster and cost-effective methodology, compared with the standard techniques, for differentiating between C. auris and C. haemulonii based on near-infrared spectroscopy (NIR) and multivariate analysis. The strains C. auris CBS10913 and C. haemulonii CH02 were separated in 15 plates per species and three isolated colonies of each plate were selected for Fourier Transform Near-Infrared (FT-NIR) analysis, totaling 90 spectra. Subsequently, Principal Component Analysis (PCA) and variable selection algorithms, including the Successive Projections Algorithm (SPA) and Genetic Algorithm (GA) coupled with Linear Discriminant Analysis (LDA), were employed to discern distinctive patterns among the samples. The use of PCA, SPA and GA algorithms associated with LDA achieved 100% sensitivity and specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were essential in selecting the most important variables (infrared wavelengths) for the models, which could be attributed to the overtone and combination bands of axial and angular deformation generated by functional groups present in the cell wall structures of these organisms, as polysaccharides, peptides, proteins or molecules resulting from yeasts’ metabolism. These results show the high potential of combined FT-NIR and multivariate analysis techniques for the classification of Candida-like fungi, which can contribute to faster and more effective diagnosis and treatment of patients affected by these microorganisms. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-03T23:53:49Z 2024-12-03T23:53:49Z 2024-09-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
NASCIMENTO, Ayrton Lucas Firmino do. Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii. Orientador: Dr. Kássio Michell Gomes de Lima. 2024. 59f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024. https://repositorio.ufrn.br/handle/123456789/60732 |
| identifier_str_mv |
NASCIMENTO, Ayrton Lucas Firmino do. Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii. Orientador: Dr. Kássio Michell Gomes de Lima. 2024. 59f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024. |
| url |
https://repositorio.ufrn.br/handle/123456789/60732 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1855758833211670528 |