Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Nascimento, Ayrton Lucas Firmino do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/60732
Resumo: Candida auris and Candida haemulonii are two emerging opportunistic pathogenic species that have been increasing in clinical cases worldwide in recent years. Differentiating some Candida species can be very laborious and needs very trained personnel, financially costly, tends to take day for a result and may not lead to results with very sensitivity and specificity, depending on their similarity. Thus, the objective of this study is to develop a new, faster and cost-effective methodology, compared with the standard techniques, for differentiating between C. auris and C. haemulonii based on near-infrared spectroscopy (NIR) and multivariate analysis. The strains C. auris CBS10913 and C. haemulonii CH02 were separated in 15 plates per species and three isolated colonies of each plate were selected for Fourier Transform Near-Infrared (FT-NIR) analysis, totaling 90 spectra. Subsequently, Principal Component Analysis (PCA) and variable selection algorithms, including the Successive Projections Algorithm (SPA) and Genetic Algorithm (GA) coupled with Linear Discriminant Analysis (LDA), were employed to discern distinctive patterns among the samples. The use of PCA, SPA and GA algorithms associated with LDA achieved 100% sensitivity and specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were essential in selecting the most important variables (infrared wavelengths) for the models, which could be attributed to the overtone and combination bands of axial and angular deformation generated by functional groups present in the cell wall structures of these organisms, as polysaccharides, peptides, proteins or molecules resulting from yeasts’ metabolism. These results show the high potential of combined FT-NIR and multivariate analysis techniques for the classification of Candida-like fungi, which can contribute to faster and more effective diagnosis and treatment of patients affected by these microorganisms.
id UFRN_badfdf017ae84a5225d740d2bd98d22b
oai_identifier_str oai:repositorio.ufrn.br:123456789/60732
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemuloniiQuímicaFungos patogénicosEspectroscopia no infravermelho próximoAnálise multivariadaPCA-LDASPA-LDACNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICACandida auris and Candida haemulonii are two emerging opportunistic pathogenic species that have been increasing in clinical cases worldwide in recent years. Differentiating some Candida species can be very laborious and needs very trained personnel, financially costly, tends to take day for a result and may not lead to results with very sensitivity and specificity, depending on their similarity. Thus, the objective of this study is to develop a new, faster and cost-effective methodology, compared with the standard techniques, for differentiating between C. auris and C. haemulonii based on near-infrared spectroscopy (NIR) and multivariate analysis. The strains C. auris CBS10913 and C. haemulonii CH02 were separated in 15 plates per species and three isolated colonies of each plate were selected for Fourier Transform Near-Infrared (FT-NIR) analysis, totaling 90 spectra. Subsequently, Principal Component Analysis (PCA) and variable selection algorithms, including the Successive Projections Algorithm (SPA) and Genetic Algorithm (GA) coupled with Linear Discriminant Analysis (LDA), were employed to discern distinctive patterns among the samples. The use of PCA, SPA and GA algorithms associated with LDA achieved 100% sensitivity and specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were essential in selecting the most important variables (infrared wavelengths) for the models, which could be attributed to the overtone and combination bands of axial and angular deformation generated by functional groups present in the cell wall structures of these organisms, as polysaccharides, peptides, proteins or molecules resulting from yeasts’ metabolism. These results show the high potential of combined FT-NIR and multivariate analysis techniques for the classification of Candida-like fungi, which can contribute to faster and more effective diagnosis and treatment of patients affected by these microorganisms.Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqCandida auris e Candida haemulonii são duas espécies de fungos patogênicos oportunistas emergentes que têm aumentado em casos clínicos em todo o mundo nos últimos anos. Diferenciar algumas espécies de Candida pode ser muito laborioso e necessita de pessoal altamente treinado, financeiramente custoso, tende a levar dias para um resultado e não pode não ter elevados níveis de seletividade e especificidade, dependendo da sua similaridade. Assim, o objetivo deste trabalho é desenvolver uma nova metodologia, mais rápida e econômica comparada aos métodos tradicionais, para diferenciar entre C. auris e C. haemulonii com base em espectroscopia de infravermelho próximo (NIR) e análise multivariada. As cepas C. auris CBS10913 e C. haemulonii CH02 foram separadas em 15 placas por espécie e três colônias isoladas de cada placa foram selecionadas para análise por Espectroscopia no Infravermelho Próximo com Transformata de Fourier (FT-NIR), totalizando 90 espectros. Subsequentemente, Análise de Componentes Principais (PCA) e algoritmos de seleção de variáveis, incluindo o Algoritmo de Projeções Sucessivas (SPA) e Algoritmo Genético (GA) acoplados à Análise Discriminante Linear (LDA), foram empregados para discernir padrões distintos entre as amostras. O uso dos algoritmos PCA, SPA e GA associados à LDA atingiu 100% de sensibilidade e especificidade para as discriminações. Os algoritmos SPA-LDA e GALDA foram essenciais na seleção das variáveis mais importantes (comprimentos de onda do infravermelho) para os modelos, o que pode ser atribuído às bandas de overtone e combinação de deformações axiais e angulares geradas por grupos funcionais de moléculas presentes nas estruturas da parede celular destes organismos, como polissacarídeos, peptídeos, proteínas ou moléculas resultantes do metabolismo das leveduras. Esses resultados mostram o alto potencial das técnicas combinadas de FT-NIR e análise multivariada para a classificação de fungos do tipo Candida, o que pode contribuir para um diagnóstico e tratamento mais rápidos e eficazes dos pacientes afetados por esses microrganismos.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICALima, Kassio Michell Gomes dehttp://lattes.cnpq.br/6439050063732257https://orcid.org/0000-0002-3827-3800http://lattes.cnpq.br/6928918856031880Menezes, Ana Carolina de Oliveira NevesMorais, Camilo de Lelis Medeiros deSchinaider, Kássia Jéssica Galdino da SilvaNascimento, Ayrton Lucas Firmino do2024-12-03T23:53:49Z2024-12-03T23:53:49Z2024-09-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfNASCIMENTO, Ayrton Lucas Firmino do. Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii. Orientador: Dr. Kássio Michell Gomes de Lima. 2024. 59f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/60732info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2024-12-03T23:54:30Zoai:repositorio.ufrn.br:123456789/60732Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2024-12-03T23:54:30Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
title Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
spellingShingle Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
Nascimento, Ayrton Lucas Firmino do
Química
Fungos patogénicos
Espectroscopia no infravermelho próximo
Análise multivariada
PCA-LDA
SPA-LDA
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
title_full Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
title_fullStr Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
title_full_unstemmed Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
title_sort Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii
author Nascimento, Ayrton Lucas Firmino do
author_facet Nascimento, Ayrton Lucas Firmino do
author_role author
dc.contributor.none.fl_str_mv Lima, Kassio Michell Gomes de
http://lattes.cnpq.br/6439050063732257
https://orcid.org/0000-0002-3827-3800
http://lattes.cnpq.br/6928918856031880
Menezes, Ana Carolina de Oliveira Neves
Morais, Camilo de Lelis Medeiros de
Schinaider, Kássia Jéssica Galdino da Silva
dc.contributor.author.fl_str_mv Nascimento, Ayrton Lucas Firmino do
dc.subject.por.fl_str_mv Química
Fungos patogénicos
Espectroscopia no infravermelho próximo
Análise multivariada
PCA-LDA
SPA-LDA
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
topic Química
Fungos patogénicos
Espectroscopia no infravermelho próximo
Análise multivariada
PCA-LDA
SPA-LDA
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
description Candida auris and Candida haemulonii are two emerging opportunistic pathogenic species that have been increasing in clinical cases worldwide in recent years. Differentiating some Candida species can be very laborious and needs very trained personnel, financially costly, tends to take day for a result and may not lead to results with very sensitivity and specificity, depending on their similarity. Thus, the objective of this study is to develop a new, faster and cost-effective methodology, compared with the standard techniques, for differentiating between C. auris and C. haemulonii based on near-infrared spectroscopy (NIR) and multivariate analysis. The strains C. auris CBS10913 and C. haemulonii CH02 were separated in 15 plates per species and three isolated colonies of each plate were selected for Fourier Transform Near-Infrared (FT-NIR) analysis, totaling 90 spectra. Subsequently, Principal Component Analysis (PCA) and variable selection algorithms, including the Successive Projections Algorithm (SPA) and Genetic Algorithm (GA) coupled with Linear Discriminant Analysis (LDA), were employed to discern distinctive patterns among the samples. The use of PCA, SPA and GA algorithms associated with LDA achieved 100% sensitivity and specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were essential in selecting the most important variables (infrared wavelengths) for the models, which could be attributed to the overtone and combination bands of axial and angular deformation generated by functional groups present in the cell wall structures of these organisms, as polysaccharides, peptides, proteins or molecules resulting from yeasts’ metabolism. These results show the high potential of combined FT-NIR and multivariate analysis techniques for the classification of Candida-like fungi, which can contribute to faster and more effective diagnosis and treatment of patients affected by these microorganisms.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-03T23:53:49Z
2024-12-03T23:53:49Z
2024-09-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv NASCIMENTO, Ayrton Lucas Firmino do. Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii. Orientador: Dr. Kássio Michell Gomes de Lima. 2024. 59f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024.
https://repositorio.ufrn.br/handle/123456789/60732
identifier_str_mv NASCIMENTO, Ayrton Lucas Firmino do. Near infrared spectroscopy and multivariate analysis as an effective, fast and cost-effective method to discriminate between Candida auris and Candida haemulonii. Orientador: Dr. Kássio Michell Gomes de Lima. 2024. 59f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024.
url https://repositorio.ufrn.br/handle/123456789/60732
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758833211670528