Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Abreu, Rute Souza de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/58340
Resumo: Failure prediction plays an important role across several sectors such as industry, technology, medical sector, among others. This task can help in the reducing of equipment maintenance costs, prevention of accidents and disasters, and improvement of system dependability since it can increase availability by reducing system downtime. This work presents a methodology for fault prediction in redundancy models designed using the formality of Generalized Stochastic Petri Networks. The approach comprehends the steps of modeling and simulation of systems with active and passive redundancy under different fault scenarios, such as non-perfect switches, standby failures, and common cause failures, as well as fault datasets generation and the implementation of a machine learning model for performing the fault prediction. For forecasting, this research utilizes Spiking Neural Networks (SNNs), which have been recognized as the third generation of Artificial Neural Networks. Just like typical artificial neural networks, SNNs draw inspiration from the biological dynamics of the brain, incorporating the interconnected topology of neurons into their architecture. However, while conventional neural networks rely on error minimization by weight adjustment, SNNs aim to replicate the learning process by simulating neuron behavior by taking into account elements of the biological process such as synapse, energy accumulation, electric impulse firing, and refractory periods between emissions. Due to the ability to capture temporal aspects from data, SNNs are vastly used in problems with time dynamics. Additionally, literature has shown these networks to be task and energy-efficient serving as a low-cost alternative compared to conventional ANNs.
id UFRN_bbf64f485e5669863b1d75b8441f390e
oai_identifier_str oai:repositorio.ufrn.br:123456789/58340
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networksSpiking neural networksDependabilityFault predictionCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAFailure prediction plays an important role across several sectors such as industry, technology, medical sector, among others. This task can help in the reducing of equipment maintenance costs, prevention of accidents and disasters, and improvement of system dependability since it can increase availability by reducing system downtime. This work presents a methodology for fault prediction in redundancy models designed using the formality of Generalized Stochastic Petri Networks. The approach comprehends the steps of modeling and simulation of systems with active and passive redundancy under different fault scenarios, such as non-perfect switches, standby failures, and common cause failures, as well as fault datasets generation and the implementation of a machine learning model for performing the fault prediction. For forecasting, this research utilizes Spiking Neural Networks (SNNs), which have been recognized as the third generation of Artificial Neural Networks. Just like typical artificial neural networks, SNNs draw inspiration from the biological dynamics of the brain, incorporating the interconnected topology of neurons into their architecture. However, while conventional neural networks rely on error minimization by weight adjustment, SNNs aim to replicate the learning process by simulating neuron behavior by taking into account elements of the biological process such as synapse, energy accumulation, electric impulse firing, and refractory periods between emissions. Due to the ability to capture temporal aspects from data, SNNs are vastly used in problems with time dynamics. Additionally, literature has shown these networks to be task and energy-efficient serving as a low-cost alternative compared to conventional ANNs.A previsão de falhas desempenha um papel importante em diversos setores, como indústria, tecnologia, setor médico, entre outros. Esta tarefa pode auxiliar na redução de custos de manutenção de equipamentos, prevenção de acidentes e desastres e melhoria da confiabilidade do sistema, uma vez que pode aumentar a disponibilidade reduzindo o tempo de inatividade do sistema. Este trabalho apresenta uma metodologia para previsão de falhas em modelos de redundância projetados utilizando a formalidade de Redes de Petri Estocásticas Generalizadas. A abordagem compreende as etapas de modelagem e simulação de sistemas com redundância ativa e passiva sob diferentes cenários de falhas, como chaveamentos imperfeitos, falhas em standby e falhas de causa comum, bem como geração de conjuntos de dados de falhas e implementação de um modelo de aprendizado de máquina para realizar a previsão de falhas. Para a etapa de aprendizado, esta pesquisa utiliza Redes Neurais Pulsadas (RNPs), que foram reconhecidas como a terceira geração de Redes Neurais Artificiais. Assim como as redes neurais artificiais típicas, as RNPs inspiram-se na dinâmica biológica do cérebro, incorporando a topologia interconectada dos neurônios em sua arquitetura. No entanto, enquanto as redes neurais convencionais focam na minimização ao de erros por meio do ajuste de pesos, as RNPs visam replicar o processo de aprendizagem simulando o comportamento dos neurônios, levando em consideração elementos do processo biológico, como sinapse, acúmulo de energia, disparo de impulso elétrico e períodos refratários entre as emissões. Devido `a capacidade de capturar aspectos temporais dos dados, as RNPs são amplamente utilizadas em problemas que possuem dinâmicas de tempo. Além disso, a literatura tem mostrado que essas redes são eficientes em termos de tarefas e energia, servindo como uma alternativa de baixo custo em comparação com RNAs convencionais.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOSilva, Ivanovitch Medeiros Dantas dahttp://lattes.cnpq.br/7179002501337812https://orcid.org/0000-0002-0116-6489http://lattes.cnpq.br/3608440944832201Costa, Daniel GouveiaVillanueva, Juan Moisés MauricioOliveira, Luiz Affonso Henderson Guedes deMoioli, Renan CiprianoAbreu, Rute Souza de2024-05-15T15:22:46Z2024-05-15T15:22:46Z2024-02-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfABREU, Rute Souza de. Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 128f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/58340info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2024-05-15T15:23:27Zoai:repositorio.ufrn.br:123456789/58340Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2024-05-15T15:23:27Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
title Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
spellingShingle Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
Abreu, Rute Souza de
Spiking neural networks
Dependability
Fault prediction
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
title_full Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
title_fullStr Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
title_full_unstemmed Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
title_sort Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
author Abreu, Rute Souza de
author_facet Abreu, Rute Souza de
author_role author
dc.contributor.none.fl_str_mv Silva, Ivanovitch Medeiros Dantas da
http://lattes.cnpq.br/7179002501337812
https://orcid.org/0000-0002-0116-6489
http://lattes.cnpq.br/3608440944832201
Costa, Daniel Gouveia
Villanueva, Juan Moisés Mauricio
Oliveira, Luiz Affonso Henderson Guedes de
Moioli, Renan Cipriano
dc.contributor.author.fl_str_mv Abreu, Rute Souza de
dc.subject.por.fl_str_mv Spiking neural networks
Dependability
Fault prediction
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Spiking neural networks
Dependability
Fault prediction
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description Failure prediction plays an important role across several sectors such as industry, technology, medical sector, among others. This task can help in the reducing of equipment maintenance costs, prevention of accidents and disasters, and improvement of system dependability since it can increase availability by reducing system downtime. This work presents a methodology for fault prediction in redundancy models designed using the formality of Generalized Stochastic Petri Networks. The approach comprehends the steps of modeling and simulation of systems with active and passive redundancy under different fault scenarios, such as non-perfect switches, standby failures, and common cause failures, as well as fault datasets generation and the implementation of a machine learning model for performing the fault prediction. For forecasting, this research utilizes Spiking Neural Networks (SNNs), which have been recognized as the third generation of Artificial Neural Networks. Just like typical artificial neural networks, SNNs draw inspiration from the biological dynamics of the brain, incorporating the interconnected topology of neurons into their architecture. However, while conventional neural networks rely on error minimization by weight adjustment, SNNs aim to replicate the learning process by simulating neuron behavior by taking into account elements of the biological process such as synapse, energy accumulation, electric impulse firing, and refractory periods between emissions. Due to the ability to capture temporal aspects from data, SNNs are vastly used in problems with time dynamics. Additionally, literature has shown these networks to be task and energy-efficient serving as a low-cost alternative compared to conventional ANNs.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-15T15:22:46Z
2024-05-15T15:22:46Z
2024-02-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ABREU, Rute Souza de. Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 128f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.
https://repositorio.ufrn.br/handle/123456789/58340
identifier_str_mv ABREU, Rute Souza de. Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 128f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.
url https://repositorio.ufrn.br/handle/123456789/58340
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758870454992896