Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufrn.br/handle/123456789/58340 |
Resumo: | Failure prediction plays an important role across several sectors such as industry, technology, medical sector, among others. This task can help in the reducing of equipment maintenance costs, prevention of accidents and disasters, and improvement of system dependability since it can increase availability by reducing system downtime. This work presents a methodology for fault prediction in redundancy models designed using the formality of Generalized Stochastic Petri Networks. The approach comprehends the steps of modeling and simulation of systems with active and passive redundancy under different fault scenarios, such as non-perfect switches, standby failures, and common cause failures, as well as fault datasets generation and the implementation of a machine learning model for performing the fault prediction. For forecasting, this research utilizes Spiking Neural Networks (SNNs), which have been recognized as the third generation of Artificial Neural Networks. Just like typical artificial neural networks, SNNs draw inspiration from the biological dynamics of the brain, incorporating the interconnected topology of neurons into their architecture. However, while conventional neural networks rely on error minimization by weight adjustment, SNNs aim to replicate the learning process by simulating neuron behavior by taking into account elements of the biological process such as synapse, energy accumulation, electric impulse firing, and refractory periods between emissions. Due to the ability to capture temporal aspects from data, SNNs are vastly used in problems with time dynamics. Additionally, literature has shown these networks to be task and energy-efficient serving as a low-cost alternative compared to conventional ANNs. |
| id |
UFRN_bbf64f485e5669863b1d75b8441f390e |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/58340 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networksSpiking neural networksDependabilityFault predictionCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAFailure prediction plays an important role across several sectors such as industry, technology, medical sector, among others. This task can help in the reducing of equipment maintenance costs, prevention of accidents and disasters, and improvement of system dependability since it can increase availability by reducing system downtime. This work presents a methodology for fault prediction in redundancy models designed using the formality of Generalized Stochastic Petri Networks. The approach comprehends the steps of modeling and simulation of systems with active and passive redundancy under different fault scenarios, such as non-perfect switches, standby failures, and common cause failures, as well as fault datasets generation and the implementation of a machine learning model for performing the fault prediction. For forecasting, this research utilizes Spiking Neural Networks (SNNs), which have been recognized as the third generation of Artificial Neural Networks. Just like typical artificial neural networks, SNNs draw inspiration from the biological dynamics of the brain, incorporating the interconnected topology of neurons into their architecture. However, while conventional neural networks rely on error minimization by weight adjustment, SNNs aim to replicate the learning process by simulating neuron behavior by taking into account elements of the biological process such as synapse, energy accumulation, electric impulse firing, and refractory periods between emissions. Due to the ability to capture temporal aspects from data, SNNs are vastly used in problems with time dynamics. Additionally, literature has shown these networks to be task and energy-efficient serving as a low-cost alternative compared to conventional ANNs.A previsão de falhas desempenha um papel importante em diversos setores, como indústria, tecnologia, setor médico, entre outros. Esta tarefa pode auxiliar na redução de custos de manutenção de equipamentos, prevenção de acidentes e desastres e melhoria da confiabilidade do sistema, uma vez que pode aumentar a disponibilidade reduzindo o tempo de inatividade do sistema. Este trabalho apresenta uma metodologia para previsão de falhas em modelos de redundância projetados utilizando a formalidade de Redes de Petri Estocásticas Generalizadas. A abordagem compreende as etapas de modelagem e simulação de sistemas com redundância ativa e passiva sob diferentes cenários de falhas, como chaveamentos imperfeitos, falhas em standby e falhas de causa comum, bem como geração de conjuntos de dados de falhas e implementação de um modelo de aprendizado de máquina para realizar a previsão de falhas. Para a etapa de aprendizado, esta pesquisa utiliza Redes Neurais Pulsadas (RNPs), que foram reconhecidas como a terceira geração de Redes Neurais Artificiais. Assim como as redes neurais artificiais típicas, as RNPs inspiram-se na dinâmica biológica do cérebro, incorporando a topologia interconectada dos neurônios em sua arquitetura. No entanto, enquanto as redes neurais convencionais focam na minimização ao de erros por meio do ajuste de pesos, as RNPs visam replicar o processo de aprendizagem simulando o comportamento dos neurônios, levando em consideração elementos do processo biológico, como sinapse, acúmulo de energia, disparo de impulso elétrico e períodos refratários entre as emissões. Devido `a capacidade de capturar aspectos temporais dos dados, as RNPs são amplamente utilizadas em problemas que possuem dinâmicas de tempo. Além disso, a literatura tem mostrado que essas redes são eficientes em termos de tarefas e energia, servindo como uma alternativa de baixo custo em comparação com RNAs convencionais.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOSilva, Ivanovitch Medeiros Dantas dahttp://lattes.cnpq.br/7179002501337812https://orcid.org/0000-0002-0116-6489http://lattes.cnpq.br/3608440944832201Costa, Daniel GouveiaVillanueva, Juan Moisés MauricioOliveira, Luiz Affonso Henderson Guedes deMoioli, Renan CiprianoAbreu, Rute Souza de2024-05-15T15:22:46Z2024-05-15T15:22:46Z2024-02-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfABREU, Rute Souza de. Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 128f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/58340info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2024-05-15T15:23:27Zoai:repositorio.ufrn.br:123456789/58340Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2024-05-15T15:23:27Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks |
| title |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks |
| spellingShingle |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks Abreu, Rute Souza de Spiking neural networks Dependability Fault prediction CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| title_short |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks |
| title_full |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks |
| title_fullStr |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks |
| title_full_unstemmed |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks |
| title_sort |
Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks |
| author |
Abreu, Rute Souza de |
| author_facet |
Abreu, Rute Souza de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Silva, Ivanovitch Medeiros Dantas da http://lattes.cnpq.br/7179002501337812 https://orcid.org/0000-0002-0116-6489 http://lattes.cnpq.br/3608440944832201 Costa, Daniel Gouveia Villanueva, Juan Moisés Mauricio Oliveira, Luiz Affonso Henderson Guedes de Moioli, Renan Cipriano |
| dc.contributor.author.fl_str_mv |
Abreu, Rute Souza de |
| dc.subject.por.fl_str_mv |
Spiking neural networks Dependability Fault prediction CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
Spiking neural networks Dependability Fault prediction CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| description |
Failure prediction plays an important role across several sectors such as industry, technology, medical sector, among others. This task can help in the reducing of equipment maintenance costs, prevention of accidents and disasters, and improvement of system dependability since it can increase availability by reducing system downtime. This work presents a methodology for fault prediction in redundancy models designed using the formality of Generalized Stochastic Petri Networks. The approach comprehends the steps of modeling and simulation of systems with active and passive redundancy under different fault scenarios, such as non-perfect switches, standby failures, and common cause failures, as well as fault datasets generation and the implementation of a machine learning model for performing the fault prediction. For forecasting, this research utilizes Spiking Neural Networks (SNNs), which have been recognized as the third generation of Artificial Neural Networks. Just like typical artificial neural networks, SNNs draw inspiration from the biological dynamics of the brain, incorporating the interconnected topology of neurons into their architecture. However, while conventional neural networks rely on error minimization by weight adjustment, SNNs aim to replicate the learning process by simulating neuron behavior by taking into account elements of the biological process such as synapse, energy accumulation, electric impulse firing, and refractory periods between emissions. Due to the ability to capture temporal aspects from data, SNNs are vastly used in problems with time dynamics. Additionally, literature has shown these networks to be task and energy-efficient serving as a low-cost alternative compared to conventional ANNs. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-05-15T15:22:46Z 2024-05-15T15:22:46Z 2024-02-29 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
ABREU, Rute Souza de. Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 128f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024. https://repositorio.ufrn.br/handle/123456789/58340 |
| identifier_str_mv |
ABREU, Rute Souza de. Enhancing fault and failure prediction in redundancy models: a novel approach using generalized stochastic petri networks and spiking neural networks. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 128f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024. |
| url |
https://repositorio.ufrn.br/handle/123456789/58340 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1855758870454992896 |