Identificação não linear usando uma rede fuzzy wavelet neural network modificada

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Araújo Júnior, José Medeiros de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
BR
UFRN
Programa de Pós-Graduação em Engenharia Elétrica
Automação e Sistemas; Engenharia de Computação; Telecomunicações
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/15249
Resumo: In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
id UFRN_c531053b341d969e5ba647b1e1ed327a
oai_identifier_str oai:repositorio.ufrn.br:123456789/15249
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Identificação não linear usando uma rede fuzzy wavelet neural network modificadaIdentificação de Sistemas. Inferência. Redes Neurais Artificiais. Teoria Wavelet. Redes Wavelet Neural Network. Redes Fuzzy Wavelet Neural NetworkSystem Identification. Inference. Artificial Neural Networks. Wavelets. Wavelet Neural Network. Fuzzy Wavelet Neural NetworkCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAIn last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performedConselho Nacional de Desenvolvimento Científico e TecnológicoNas últimas décadas, as redes neurais têm se estabelecido como uma das principais ferramentas para a identificação de sistemas não lineares. Entre os diversos tipos de redes utilizadas em identificação, uma que se pode destacar é a rede neural wavelet (ou Wavelet Neural Network - WNN). Esta rede combina as características de multirresolução da teoria wavelet com a capacidade de aprendizado e generalização das redes neurais, podendo fornecer modelos mais exatos do que os obtidos pelas redes tradicionais. Uma evolução das redes WNN consiste em combinar a estrutura neuro-fuzzyANFIS (Adaptive Network Based Fuzzy Inference System) com estas redes, gerando-se a estrutura Fuzzy Wavelet Neural Network - FWNN. Essa rede é muito similar às redes ANFIS, com a diferença de que os tradicionais polinômios presentes nos consequentes desta rede são substituídos por redes WNN. O presente trabalho propõe uma rede FWNN modificada para a identificação de sistemas dinâmicos não lineares. Nessa estrutura, somente funções waveletssão utilizadas nos consequentes. Desta forma, é possível obter uma simplificação da estrutura com relação a outras estruturas descritas na literatura, diminuindo o número de parâmetros ajustáveis da rede. Para avaliar o desempenho da rede FWNN com essa modificação, é realizada uma análise das características da rede, verificando-se as vantagens, desvantagens e o custo-benefício quando comparada com outras estruturas FWNNs. As avaliações são realizadas a partir da identificação de dois sistemas simulados tradicionalmente encontrados na literatura e um sistema real não linear, consistindo de um tanque de multisseções e não linear. Por fim, a rede foi utilizada para inferir valores de temperatura e umidade no interior de uma incubadora neonatal. A execução dessa análise baseia-se em vários critérios, tais como: erro médio quadrático, número de épocas de treinamento, número de parâmetros ajustáveis, variância do erro médio quadrático, entre outros. Os resultados encontrados evidenciam a capacidade de generalização da estrutura modificada, apesar da simplificação realizadaUniversidade Federal do Rio Grande do NorteBRUFRNPrograma de Pós-Graduação em Engenharia ElétricaAutomação e Sistemas; Engenharia de Computação; TelecomunicaçõesAraújo, Fábio Meneghetti Ugulino dehttp://lattes.cnpq.br/3758667796324850http://lattes.cnpq.br/5473196176458886Maitelli, André Laurindohttp://lattes.cnpq.br/0477027244297797Casillo, Danielle Simone da Silvahttp://lattes.cnpq.br/2111858571672626Almeida, Otacílio da Motahttp://lattes.cnpq.br/1721353262824215Yoneyama, Takashihttp://lattes.cnpq.br/9201712893785499Araújo Júnior, José Medeiros de2014-12-17T14:55:19Z2014-09-242014-12-17T14:55:19Z2014-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfARAÚJO JÚNIOR, José Medeiros de. Identificação não linear usando uma rede fuzzy wavelet neural network modificada. 2014. 110 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2014.https://repositorio.ufrn.br/jspui/handle/123456789/15249porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2017-11-02T10:39:42Zoai:repositorio.ufrn.br:123456789/15249Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2017-11-02T10:39:42Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Identificação não linear usando uma rede fuzzy wavelet neural network modificada
title Identificação não linear usando uma rede fuzzy wavelet neural network modificada
spellingShingle Identificação não linear usando uma rede fuzzy wavelet neural network modificada
Araújo Júnior, José Medeiros de
Identificação de Sistemas. Inferência. Redes Neurais Artificiais. Teoria Wavelet. Redes Wavelet Neural Network. Redes Fuzzy Wavelet Neural Network
System Identification. Inference. Artificial Neural Networks. Wavelets. Wavelet Neural Network. Fuzzy Wavelet Neural Network
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Identificação não linear usando uma rede fuzzy wavelet neural network modificada
title_full Identificação não linear usando uma rede fuzzy wavelet neural network modificada
title_fullStr Identificação não linear usando uma rede fuzzy wavelet neural network modificada
title_full_unstemmed Identificação não linear usando uma rede fuzzy wavelet neural network modificada
title_sort Identificação não linear usando uma rede fuzzy wavelet neural network modificada
author Araújo Júnior, José Medeiros de
author_facet Araújo Júnior, José Medeiros de
author_role author
dc.contributor.none.fl_str_mv Araújo, Fábio Meneghetti Ugulino de

http://lattes.cnpq.br/3758667796324850

http://lattes.cnpq.br/5473196176458886
Maitelli, André Laurindo

http://lattes.cnpq.br/0477027244297797
Casillo, Danielle Simone da Silva

http://lattes.cnpq.br/2111858571672626
Almeida, Otacílio da Mota

http://lattes.cnpq.br/1721353262824215
Yoneyama, Takashi

http://lattes.cnpq.br/9201712893785499
dc.contributor.author.fl_str_mv Araújo Júnior, José Medeiros de
dc.subject.por.fl_str_mv Identificação de Sistemas. Inferência. Redes Neurais Artificiais. Teoria Wavelet. Redes Wavelet Neural Network. Redes Fuzzy Wavelet Neural Network
System Identification. Inference. Artificial Neural Networks. Wavelets. Wavelet Neural Network. Fuzzy Wavelet Neural Network
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Identificação de Sistemas. Inferência. Redes Neurais Artificiais. Teoria Wavelet. Redes Wavelet Neural Network. Redes Fuzzy Wavelet Neural Network
System Identification. Inference. Artificial Neural Networks. Wavelets. Wavelet Neural Network. Fuzzy Wavelet Neural Network
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
publishDate 2014
dc.date.none.fl_str_mv 2014-12-17T14:55:19Z
2014-09-24
2014-12-17T14:55:19Z
2014-03-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ARAÚJO JÚNIOR, José Medeiros de. Identificação não linear usando uma rede fuzzy wavelet neural network modificada. 2014. 110 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2014.
https://repositorio.ufrn.br/jspui/handle/123456789/15249
identifier_str_mv ARAÚJO JÚNIOR, José Medeiros de. Identificação não linear usando uma rede fuzzy wavelet neural network modificada. 2014. 110 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2014.
url https://repositorio.ufrn.br/jspui/handle/123456789/15249
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
BR
UFRN
Programa de Pós-Graduação em Engenharia Elétrica
Automação e Sistemas; Engenharia de Computação; Telecomunicações
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
BR
UFRN
Programa de Pós-Graduação em Engenharia Elétrica
Automação e Sistemas; Engenharia de Computação; Telecomunicações
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758763120656384