Seismic processing prediction with a generative adversarial network

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: González, Jaime Andrés Collazos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE PETRÓLEO
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/60193
Resumo: Seismic processing involves a large number of analytic tools, that step by step, transform seismic field data into interpretable images of the subsurface. To obtain a seismic image that represents the geological model accurately, considerable time and computational resources are needed, as well as accurate physical models that are close to the actual solution. Unlike analytical methods, deep learning doesn’t need to have an exact knowledge of the physical behavior, changing how to make adjustments to the seismic signal. On the other hand, having a good amount of data set suitable for training the model becomes a limitation because the field data are limited and all are used for building a seismic image. In this work, we used Generative Adversarial Networks (GAN), initially designed to generate new images from a reference image, these types of networks don’t require a large amount of training data set and use low computational resources. In this work, two scenarios are presented. The first, proposes a new interpolation methodology applicable to OBN acquisitions, for 2D and 3D. This methodology describes the selection and preparation of training data and a workflow to train a GAN model and make a prediction using the same seismic data acquisition. The second scenario makes predictions of seismic images migrated with full-track processing, taking fast-track data as input to the model. The training methodology is performed conventionally, that is, a part of the data was used for training and another for testing, obtaining an efficient model in its predictions with the possibility of being used with time-lapse data. For both proposed scenarios, the same GAN is applied, modifying the training data for each case, demonstrating the flexibility of this type of network performing different tasks related to seismic processing with a small amount of data.
id UFRN_c5a71b68d5bdde17afe5f07982fa954c
oai_identifier_str oai:repositorio.ufrn.br:123456789/60193
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Seismic processing prediction with a generative adversarial networkSeismic processingDenoiseInterpolationDeep learningU-NetGenerative adversarial networksCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA::PETROLEO E PETROQUIMICASeismic processing involves a large number of analytic tools, that step by step, transform seismic field data into interpretable images of the subsurface. To obtain a seismic image that represents the geological model accurately, considerable time and computational resources are needed, as well as accurate physical models that are close to the actual solution. Unlike analytical methods, deep learning doesn’t need to have an exact knowledge of the physical behavior, changing how to make adjustments to the seismic signal. On the other hand, having a good amount of data set suitable for training the model becomes a limitation because the field data are limited and all are used for building a seismic image. In this work, we used Generative Adversarial Networks (GAN), initially designed to generate new images from a reference image, these types of networks don’t require a large amount of training data set and use low computational resources. In this work, two scenarios are presented. The first, proposes a new interpolation methodology applicable to OBN acquisitions, for 2D and 3D. This methodology describes the selection and preparation of training data and a workflow to train a GAN model and make a prediction using the same seismic data acquisition. The second scenario makes predictions of seismic images migrated with full-track processing, taking fast-track data as input to the model. The training methodology is performed conventionally, that is, a part of the data was used for training and another for testing, obtaining an efficient model in its predictions with the possibility of being used with time-lapse data. For both proposed scenarios, the same GAN is applied, modifying the training data for each case, demonstrating the flexibility of this type of network performing different tasks related to seismic processing with a small amount of data.O processamento sísmico é composto pela aplicação de um grande número de ferramentas que passo a passo, transformam dados brutos de campo em imagens do subsolo. Mas para chegar a uma imagem sísmica que represente corretamente o modelo geológico, são necessários tempo e alto custo computacional no processamento sísmico, além de modelos físicos muitos próximos da solução real. Diferentemente dos métodos analíticos, com o uso de deep learning, não é necessário ter um conhecimento exato do comportamento físico, mudando a forma de fazer ajustes no sinal sísmico. Por outro lado, ter um bom conjunto de dados adequado para treinar o modelo torna-se uma limitação quando se trata de dados reais. Neste trabalho foram utilizadas redes adversárias generativas GAN (Generative Adversarial Networks), inicialmente projetadas para gerar novas imagens a partir de uma imagem de referência. Essas redes não requerem uma grande quantidade de conjunto de dados de treinamento e não necessitam de um alto custo computacional. Este trabalho apresenta dois cenários. Uma nova metodologia de interpolação aplicável ao aquisições OBN, para dados 2D e 3D. Esta metodologia descreve a seleção e preparação de dados de treinamento e um fluxo de trabalho para treinar um modelo GAN e fazer uma predição usando a mesma aquisição de dados sísmicos. O segundo cenário apresentado faz previsões de imagens sísmicas migradas com processamento full-track, tomando dados fast-track como entrada para o modelo. A metodologia de treinamento foi realizada de forma clássica, ou seja, uma parte dos dados foi utilizada para treinamento e outra para teste, obtendo um modelo eficiente em suas previsões com possibilidade de ser utilizado com dados time-lapse. Os dois cenários apresentados foram realizados com a mesma rede GAN, porém modificados os dados de treinamento, demonstrando a flexibilidade desse tipo de rede para realizar diferentes tarefas relacionadas ao processamento sísmico com uma pequena quantidade de dados.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE PETRÓLEOAraújo, João Medeiros dehttp://lattes.cnpq.br/1016120799169653https://orcid.org/0000-0001-8462-4280http://lattes.cnpq.br/3061734732654188Gomes, Alessandra DavólioDuarte, Edwin Humberto FaguaCorso, GilbertoLopez, Jorge LuisGonzález, Jaime Andrés Collazos2024-09-18T20:59:37Z2024-09-18T20:59:37Z2024-07-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfGONZÁLEZ, Jaime Andrés Collazos. Seismic processing prediction with a generative adversarial network. Orientador: Dr. João Medeiros de Araújo. 2024. 98f. Tese (Doutorado em Ciência e Engenharia de Petróleo) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/60193info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2024-09-18T21:00:12Zoai:repositorio.ufrn.br:123456789/60193Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2024-09-18T21:00:12Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Seismic processing prediction with a generative adversarial network
title Seismic processing prediction with a generative adversarial network
spellingShingle Seismic processing prediction with a generative adversarial network
González, Jaime Andrés Collazos
Seismic processing
Denoise
Interpolation
Deep learning
U-Net
Generative adversarial networks
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA::PETROLEO E PETROQUIMICA
title_short Seismic processing prediction with a generative adversarial network
title_full Seismic processing prediction with a generative adversarial network
title_fullStr Seismic processing prediction with a generative adversarial network
title_full_unstemmed Seismic processing prediction with a generative adversarial network
title_sort Seismic processing prediction with a generative adversarial network
author González, Jaime Andrés Collazos
author_facet González, Jaime Andrés Collazos
author_role author
dc.contributor.none.fl_str_mv Araújo, João Medeiros de
http://lattes.cnpq.br/1016120799169653
https://orcid.org/0000-0001-8462-4280
http://lattes.cnpq.br/3061734732654188
Gomes, Alessandra Davólio
Duarte, Edwin Humberto Fagua
Corso, Gilberto
Lopez, Jorge Luis
dc.contributor.author.fl_str_mv González, Jaime Andrés Collazos
dc.subject.por.fl_str_mv Seismic processing
Denoise
Interpolation
Deep learning
U-Net
Generative adversarial networks
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA::PETROLEO E PETROQUIMICA
topic Seismic processing
Denoise
Interpolation
Deep learning
U-Net
Generative adversarial networks
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA::PETROLEO E PETROQUIMICA
description Seismic processing involves a large number of analytic tools, that step by step, transform seismic field data into interpretable images of the subsurface. To obtain a seismic image that represents the geological model accurately, considerable time and computational resources are needed, as well as accurate physical models that are close to the actual solution. Unlike analytical methods, deep learning doesn’t need to have an exact knowledge of the physical behavior, changing how to make adjustments to the seismic signal. On the other hand, having a good amount of data set suitable for training the model becomes a limitation because the field data are limited and all are used for building a seismic image. In this work, we used Generative Adversarial Networks (GAN), initially designed to generate new images from a reference image, these types of networks don’t require a large amount of training data set and use low computational resources. In this work, two scenarios are presented. The first, proposes a new interpolation methodology applicable to OBN acquisitions, for 2D and 3D. This methodology describes the selection and preparation of training data and a workflow to train a GAN model and make a prediction using the same seismic data acquisition. The second scenario makes predictions of seismic images migrated with full-track processing, taking fast-track data as input to the model. The training methodology is performed conventionally, that is, a part of the data was used for training and another for testing, obtaining an efficient model in its predictions with the possibility of being used with time-lapse data. For both proposed scenarios, the same GAN is applied, modifying the training data for each case, demonstrating the flexibility of this type of network performing different tasks related to seismic processing with a small amount of data.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-18T20:59:37Z
2024-09-18T20:59:37Z
2024-07-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GONZÁLEZ, Jaime Andrés Collazos. Seismic processing prediction with a generative adversarial network. Orientador: Dr. João Medeiros de Araújo. 2024. 98f. Tese (Doutorado em Ciência e Engenharia de Petróleo) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024.
https://repositorio.ufrn.br/handle/123456789/60193
identifier_str_mv GONZÁLEZ, Jaime Andrés Collazos. Seismic processing prediction with a generative adversarial network. Orientador: Dr. João Medeiros de Araújo. 2024. 98f. Tese (Doutorado em Ciência e Engenharia de Petróleo) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024.
url https://repositorio.ufrn.br/handle/123456789/60193
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE PETRÓLEO
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE PETRÓLEO
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758814461034496