Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lima, Lin Machado de lattes
Orientador(a): Salles, Cristiane Martins Cardoso de
Banca de defesa: Vieira, Andr? Luiz Gomes, Fernandes, Daniele Corr?a, Santos, Andr? Marques dos, Bastos Neto, Jayme da Cunha
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Qu?mica
Departamento: Instituto de Qu?mica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/5322
Resumo: Monoamine oxidase [EC 1.4.3.4 (MAO)] is an enzyme located in the outer membrane of the mitochondria, which uses flavin adenine dinucleotide (FAD) as a cofactor to catalyze the oxidant conversion of an amine in its corresponding aldehyde, also producing ammonia and hydrogen peroxide. MAO activity regulates the levels of biogenic amines present in tissues, especially in the brain. MAO exists as two proteins: MAO-A and MAO-B. These isoforms were defined primarily by substrate affinities and inhibitor sensitivity. Accordingly, MAO-A oxidizes, preferably, serotonin, melatonin, noradrenaline and adrenaline. MAO-B preferably oxidizes phenylethylamine, an alkaloid from the metabolism of phenylalanine. The ingestion of phenylethylamine promotes the release of dopamine that acts in the brain stimulating euphoria. Concerning the inhibitors, MAO-A is preferentially inhibited by clorgiline. MAO-B is inhibited by deprenyl and pargyline. These inhibitors can be used in the treatment of degenerative brain diseases. Since studies have shown that molecules derived from coumarins achieved excellent results as inhibitors of these enzymes, several new drugs derived from coumarin have been synthesized, which a few are very promising in the treatment of Alzheimer's and Parkinson's diseases. This study aimed to promote in vitro inhibition tests of MAO with new substances derived from coumarin. Among the compounds tested, two of them were shown to be promising as MAO inhibitors of mitochondrial fraction of wistar rat brain, reaching more than 60% inhibition of monoamine oxidase activity.
id UFRRJ-1_5b171b8ced792a455038ffa3cd89e331
oai_identifier_str oai:localhost:jspui/5322
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Salles, Cristiane Martins Cardoso deCPF: 035.399.287-90Bastos, Frederico FreireCPF: 082.617.467-76Vieira, Andr? Luiz GomesFernandes, Daniele Corr?aSantos, Andr? Marques dosBastos Neto, Jayme da CunhaCPF: 805.264.627-87http://lattes.cnpq.br/4443098894988565Lima, Lin Machado de2022-01-19T18:51:45Z2019-07-01LIMA, Lin Machado de. Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina. 2019. 33 f. Disserta??o (Mestrado em Qu??mica) - Instituto de Qu??mica, Departamento de Bioqu??mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.https://tede.ufrrj.br/jspui/handle/jspui/5322Monoamine oxidase [EC 1.4.3.4 (MAO)] is an enzyme located in the outer membrane of the mitochondria, which uses flavin adenine dinucleotide (FAD) as a cofactor to catalyze the oxidant conversion of an amine in its corresponding aldehyde, also producing ammonia and hydrogen peroxide. MAO activity regulates the levels of biogenic amines present in tissues, especially in the brain. MAO exists as two proteins: MAO-A and MAO-B. These isoforms were defined primarily by substrate affinities and inhibitor sensitivity. Accordingly, MAO-A oxidizes, preferably, serotonin, melatonin, noradrenaline and adrenaline. MAO-B preferably oxidizes phenylethylamine, an alkaloid from the metabolism of phenylalanine. The ingestion of phenylethylamine promotes the release of dopamine that acts in the brain stimulating euphoria. Concerning the inhibitors, MAO-A is preferentially inhibited by clorgiline. MAO-B is inhibited by deprenyl and pargyline. These inhibitors can be used in the treatment of degenerative brain diseases. Since studies have shown that molecules derived from coumarins achieved excellent results as inhibitors of these enzymes, several new drugs derived from coumarin have been synthesized, which a few are very promising in the treatment of Alzheimer's and Parkinson's diseases. This study aimed to promote in vitro inhibition tests of MAO with new substances derived from coumarin. Among the compounds tested, two of them were shown to be promising as MAO inhibitors of mitochondrial fraction of wistar rat brain, reaching more than 60% inhibition of monoamine oxidase activity.A monoamina oxidase [EC 1.4.3.4 (MAO)] ? uma enzima localizada na membrana externa da mitoc?ndria que usa a flavina adenina dinucleot?deo (FAD) como cofator enzim?tico para catalisar a convers?o oxidante de uma amina em seu alde?do correspondente, produzindo tamb?m am?nia e per?xido de hidrog?nio. A atividade das monoamina oxidases regula os n?veis de aminas biog?nicas presentes nos tecidos, principalmente no c?rebro. Monoamina oxidases existem como duas prote?nas: MAO-A e MAO-B. Estas isoformas foram definidas primariamente pelas afinidades por substratos e sensibilidade aos inibidores. Assim, a MAO-A oxida preferencialmente serotonina, melatonina, noradrenalina e adrenalina. A MAO-B oxida preferencialmente a feniletilamina, um alcaloide do metabolismo da fenilalanina. A ingest?o de feniletilamina promove a libera??o de dopamina que atua no c?rebro estimulando euforia. Com rela??o aos inibidores, a MAO-A ? inibida preferencialmente por clorgilina. MAO-B ? inibida por deprenil e por pargilina. Esses inibidores podem ser usados para o tratamento das doen?as degenerativas do c?rebro. Desde que estudos t?m mostrado que mol?culas derivadas de cumarinas obtiveram excelentes resultados como inibidoras destas enzimas, muitas drogas novas derivadas da cumarina v?m sendo sintetizadas, das quais algumas s?o muito promissoras para o tratamento das doen?as de Alzheimer e Parkinson. O alvo desse trabalho foi promover testes de inibi??o in vitro da MAO da fra??o mitocondrial de c?rebro de rato Wistar com novos produtos derivados da cumarina. Dentre os compostos testados, dois deles se mostraram promissores como inibidores da MAO de fra??o mitocondrial de c?rebro de rato wistar, atingindo mais de 60% de inibi??o da atividade da monoamina oxidase.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-01-19T18:51:44Z No. of bitstreams: 1 2019 - Lin Machado de Lima.pdf: 931751 bytes, checksum: b85decb15478a60703cdbcccab374702 (MD5)Made available in DSpace on 2022-01-19T18:51:45Z (GMT). No. of bitstreams: 1 2019 - Lin Machado de Lima.pdf: 931751 bytes, checksum: b85decb15478a60703cdbcccab374702 (MD5) Previous issue date: 2019-07-01CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/67901/2019%20-%20Lin%20Machado%20de%20Lima.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Qu?micaUFRRJBrasilInstituto de Qu?mica1.(JPND), E.J.-N.([s.d.]). de JPND Research. Dispon?vel em:?http://www.neurodegenerationresearch.eu/about/what/?. Acesso em maio de 2013. 2.Alzheimer?s association. , de Alzheimer?s Australia. Dispon?vel em:?http://www.fightdementia.org.au/understanding-dementia/section-1-about-dementia.aspx?. Acesso em maio de 2013. 3.ANNAMALAI, B.; WON, J.S.; CHOI, S.; SINGH, I.; SINGH, A.K.. Role of s-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation. Biochemical andBiophysical Research Communications, 458, n?1, 214-219, 2015. 4.Associa??o Brasileira de Alzheimer (Abraz). Dispon?vel em: ?http://www.portalnovidade.com.br/materia/7315/doenca-neurodegenerativa-acomete-milhoes-em-todo-o-mundo.html?. Acesso em 15 de abril de 2015. 5.AZIMI, S.; RAUK, A.. On the involvement of copper binding to the N-terminus of theamyloid beta peptide of Alzheimer?s disease: a computational study on model systems.International Journal of Alzheimer?s Disease, 2011, Article ID 539762, 1-15, 2011. 6.BARNHAM, K.J.; MASTERS, C.L.; BUSH, A.I.. Neurodegenerative diseases andoxidative stress. Nature Reviews Drugs Discovery, 3, 205-214, 2004. 7.BARNHAN, K.J.; BUSH, A.L.. Metals in Alzheimer?s and Parkinson?s diseases. CurrentOpinion in Chemical Biology, 12, n? 2, 222-228, 2008. 8.BARREIROS, A.L.B.S.; DAVID, J.M.; DAVID, J.P.. Estresse oxidativo: rela??o entregera??o de esp?cies relativas e defesa do organismo. Qu?mica nova, 29, n? 1, 113-123,2006. 9.BARTUS, R.T.; DEAN, R.L.; BEER, B.; LIPPA, A.S.. The cholinergic hypothesis ofgeriatric memory dysfunctions. Science, 217, 408-417, 1982. 10.BENNET, B.M.; REYNOLDS, J.N.; PRUSKY, G.T.; DOUGLAS, R.M.; SUTHERLAND,R.J.; THATCHER, G.R.. Cognitive deficits in rat after forebrain cholinergic depletion arereversed by a novel no mimetic nitrate ester. Neuropsychopharmacology, 32, n? 3, 505-513, 2006. 11.BERGER-SWEENEY, J.; ARNOLD, A.; GABEAU, D,; MILLS, J.. Sex differences inlearning and memory in mice: effects of sequence of testing and cholinergic blockade.Beharvioral Neuroscience, 109, n? 5, 859-873, 1995. 12.BUSH, A.L.; PETTINGELL, W.H.; MULTHAUP, G.; d PARADIS, M.; VONSATTEL,J.P.; GUSELLA, J.F.; BEYREUTHER, K.; MASTERS, C.L.; TANZI, R.E.. Rapideinduction of Alzheimer A beta amyloid formation by zinc. Science, 265, n? 5177, 1464-1467, 1994. 13.CHARTIER-HARLIN, M.C.; CROWFORD, F.; HOULDEN, H.; WARREN, A.;HUGHES, D.; FIDANI, L.; GOATE, A.; ROSSOR, M.; ROQUES, P.; HARDY, J.. Early-onset Alzheimer?s disease caused by mutations st codon 717 of Beta-amyloid precursorprotein gene. Nature, 353, 844-846, 1991. 14.CITRON, M.; OUTERSDORF, T.; HAASS, C.; McCONLOQUE, L.; HUNG, A.Y.;SEUBERT, P.; VIGO-PELFREY, C.; LIEBERBURG, I.; SELDKOE, D.J.. Mutation ofbeta-amyloid precursor protein in familial Alzheimer?s disease increases beta-proteinproduction. Nature, 360, n? 6405, 672-674, 1992. 15.COYLE, J.T.; PRICE, D.L.; DeLONG, M.R.. Alzheimer?s disease: a disorder of corticalcholinergic innervation. Science, 219, 1184-1190, 1983. 16.CRADDOCK, T.J.; TUSZYNSKI, J.A.; CHOPRA, D.; CASEY, N.; GOLDSTEIN, L.E.;HAMEROFF, S.R.; TANZI, R.E.. The zinc dyshomeostasis hypothesis of Alzheimer?sdisease. Plos One, 7, n? 3, 1-16, 2012. 17.DANSHER, G.; JENSEN, K.B.; FREDERICKSON, C.J.; KEMP, K.; ANDREASEN, A.;JUHL, S.; STOLLENBERG, M.; RAVID, R.. Increased amount of zinc in thehippocampus and amygdala of Alzheimer?s disease brains: a proton-induced X-rayemission spectroscopic analysis of cryostat sections from autopsy material. JournalNeuroscience Methods, 76, n? 1, 53-59, 1997. 18.DAVIES, P.; MALONEY, A.J.F.. Selective loss of central cholinergic neurons inAlzheimer?s disease. The Lancet, 308, 1403, 1976. 19.DE FALCO, A.; CUKIERMAN, D.S.; HAUSER-DAVIS, R.A.; REY, N.A.. Doen?a deAlzheimer: hip?teses etiol?gicas e perspectivas de tratamento. Qu?mica Nova, 39, n? 1,1678-17064, 2016. 20.DEIBEL, M.A.; EHMANN, W.D.; MARKESBERY, W.R.. Copper, iron, and zincimbalances in severely degenerated brain regions in Alzheimer?s disease: possible relationto oxidative stress. Journal of the Neurological Sciences, 143, n? 1-2, 137-142, 1996. 21.DEUTSH, J.A.. The cholinergic synapse and the site of memory. Science, 174, 788-794,1971. 22.DINGLEDINE, R.; BORGES, K.; BOWIE, D.; TRAYNELIS, S.F.. The glutamatereceptor ion channels. Pharmacology Reviews, 51, n? 1, 7-61, 1999. 23.DOMINGUEZ, J.L.; FERN?NDEZ,-NIETO, F.; BREA,J.M.; CATTO, M.; SOTO-OTERO,R.. 8-Aminomethyl-7-hydroxy-4-methylcoumarins as multitarget leads forAlzheimer?s Disease. Chemistry Select, 1, 2742-2749, 2016. 24.DRACHMAN, D.A.; SAHAKIAN, B.J.. Memory and cognitive function in the elderly: Apreliminary trial of physostigmine. Archives of Neurology, 37, (10), 674-675, 1980. 25.FINCKH, U.; KUSCHEL, C.; ANAGNOSOULI, M.; PATSOURIS, E.; PANTS, G.V.;GATZONIS, S.; KAPAKI, E.; DAVAKI, P.; LAMSZUS, K.; STAVROU, D.; GAL, A..Novel mutations and repeated findings of mutations in familial Alzheimer?s disease.Neurogenetics, 6, n? 2, 85-89, 2005. 26.FOLLMER, C.; BEZERRA-NETO, H.J.C.. F?rmacos multifuncionais: monoaminaoxidase e a-sinucle?na como alvos terap?uticos na doen?a de Parkinson. Qu?mica Nova,36, n? 2, 1-12, 2013. 27.GANDY, S.. The role of cerebral amyloid beta accumulation in forms of Alzheimer?sdisease. The Journal of Clinical Investigation, 115, (5), 1121-1129, 2005. 28.GIACCONE, G.; TAGLIAVINI, F.; LINOLI, G.; BOURAS, C.; FRIGERIO, L.;FRANGIONE, B.; BUGIANE, O.. Down patients: Extracellular preamyloyd depositsprecede neuritic degeneration and senile plaques. Neuroscience Letters, 97, (1-2), 232-238,1989. 29.GOATE, A.; CHARTIER-HARLIN, M.C.; MULLAN, M.; BROWN, J.; CRAWFORD,F.; FIDANE,L.; GIUFFRA, L.; HAYNES, A.; IRVING, N.; JAMES, L.. Nature, 349,704-706, 1991. 30.GREEN, A.; ELLIS, K.A.; ELLIS, J,; BARTHOLOMEUSZ,C.F.; LLIC,S.; CROFT,R.J.;PHAN,K.L.; NATHAN,P.J.. Muscarinic and nicotinic receptor modulation of object andspatial n-back working memory in humans. Pharmacology Biochemistry and Behaviour,81, n? 3, 575-584, 2005. 31.GREENAMYRE, J.T.; YOUNG, A.B.. Excitatory amino acids and Alzheimer?s disease.Neurobiology of anging, 10, n? 5, 593-602, 1989. 32.GREENAMYRE, J.T.;MARAGOS,W.F.; ALBIN, R.L.; PENNEY, J.B.; YOUNG, A.B..Glutamate transmission and toxicity in Alzheimer?s disease. Proq.Neuropsychopharmacology Biology Psychiatry, 12, n? 4, 421-430, 1988. 33.GU, L.; LIU, C.; GUO, Z.. Structural insights into Abeta42 oligomers using site-directedspin labelling. Journal Biological Chemistry, 288, n? 26, 18673-18683, 2013. 34.HAASS, C.; HUNG, A.Y.; SELKOE, D.J.; TEPLOW, D.B.. Mutations associated with alocus for familial Alzheimer?s disease result in alternative processing of amyloid beta-protein precursor. Journal Biologic Chemistry, 269, 17741-17748, 1994. 35.HANE, F.; LEONENKO, Z.. Effect of metal on kinetic pathways of amyloid-betaaggregation. Biomolecules, 4, n? 1, 101-116, 2014. 36.HANE, F.; TRAN, G.; ATTWOOD, S.J.; LEONENKO, Z.. Cu(+2) affects amyloid ?Beta(1-42) aggregation by increasing peptide-peptide binding forces. Plos One, 8, n? 3, 1-8,2013. 37.HARDMAN, J.G.; LIMBIRD, L.E.; GILMAN, A.G.; GOODMAN, L.S.; GILMAN, A.;Goodman & Gilman's the pharmacological basis of therapeutics, McGraw-Hill: NewYork, 1996. 38.HARDY, J.A.; HIGGINS, G.A.. Alzheimer?s disease: the amyloid cascade hypothesis.Science, 256, n? 5054, 184-185, 1992. 39.HASS, C.; SCHLOSSMACHER, M.G.; HUNG, A.Y.; VIGO-PELFREY, C.; MELLON,A.; OSTSZEWSKI, B.L.; LIEBERBURG, I.; KOO, E.H.; SCHENK, D.; TEPLOW, D.B..Nature, 359, 322-325, 1992. 40.HASSELMO, M.E.. The role of acethylcholine in learning and memory. Current Opinionin Neurobiology, 16, n? 6, 710-715, 2006. 41.HE, W.; BARROW, C.J.; The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides foundin senile plaque have greater beta-sheet forming and aggregation propensities in vitro thanfull-length A beta. Biochemistry, 38, n? 33, 10871- 1877, 1999. 42.HENDRIKS, L.; van DUIJN, C.M.; CRAS, P.; CRUTS, M.; Van Hul, W.; vanHARSKAMP, F.; WARREN, A.; McINNIS, M.G.; ANTONARAKIS, S.E.; MARTIN,J.J.. Nature Genetics, 1, 218-221, 1992. 43.HUANG, M.;XIE, S.S.; JIANG, N.; LAN, J.S.; KONG, L.Y.; WNAG, X.B..Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-?-amyloid (A?) aggregation and metal chelation properties against Alzheimer?s. Bioorganic& Medicinal Chemistry Letters, 25, 508-513, 2015. 44.IWATSUBO, T.; MANN, D.M.; ODAKA, A.; SUZUKI, N.; IHARA, Y.. Amyloid betaprotein (A beta) deposition: A beta 42(43) precedes a beta 40 in Down syndrome. Annalsof Neurology, 37, n? 3, 294-299, 1995. 45.K?SA, P.;RANKONCZAY, Z.; GULYA,K.. The cholinergic system in Alzheimer?sdisease. Progress in Neurobiology, 52, n? 6, 511-535, 1997. 46.KAYED, R.; SOKOLOV, Y.; EDMONDNS, B.; McINTIRE, T.M.; MILTON, S.C.;HALL, J.E.; GLABE, C.G.. permeabilization of lipid bilayers is a common conformation-dependent activity of volume amyloid oligomers in protein misfolding diseases. JournalBiological Chemistry, 279, 46363-46366, 2004. 47.KLEIN, W,L.; KRAFFT, G.A.; FINCH, C.E.. Targeting small A-beta oligomers: thesolution to an Alzheimer?s disease conundrum? Trends in Neurosciences, 24, n?4, 219-224, 2001. 48.KRAJL, M.. A rapid microfluorimetric determination of monoamine oxidase. BiochemicalPharmacology, 14, 1683-1685, 1965. 49.LEE, J.; CULYBA, E.K.; POWERS, E.T.; KELLY, J.W.. amyloid-beta forms fibrils bynucleated conformational conversation of oligomers. Nature Chemical Biology, 7, 602-609, 2011. 50.LEVY, E.; CARMAN, M.D.; FERNANDEZ-MADRID, I.J.; POWER, M.D.;LIEBERBURG, I.; van DUINEN, S.G.; BOTS, G.T.; LUYENDIJK, W.; FRANGIONE,B.. Mutation of the Alzheimer?s disease amyloid gene in hereditary cerebral hemorrhage,Dutch type. Science, 248, n? 4959, 1125-1126, 1990. 51.LOVELL, M.A.; ROBERTSON, J.D.; TEESDALE, W.J.; CAMPBELL, J.L.;MARKESBERY, W.R.. Copper, iron, and zinc in Alzheimer?s disease senile plaques.Journal of the Neurological Sciences, 158, n? 1, 47-52, 1998. 52.MATOS, M.J.. Potent and selective MAO-B inhibitory activity: Amino-versus nitro-3-arylcoumarin derivatives. Bioorganic & Medicinal Chemistry Letters, 25, 642-648, 2015. 53.MATTSON, M.P.. Cellular actions of beta-amyloid precursor protein and its soluble andfibrillogenic derivates. American Physiological Society Reviews, 77, n? 4, 1081- 1090,1997. 54.MAYA, A. ([s.d.]). Masters Neurosciences ? Universit? de Strasbourg: Dispon?vel em?http://neuromaster.ustrasburg.fr/forms%20and%20PDF/Biography_of_Alois_Alzheimer%20by%20.pdf?. Acesso em maio de 2013. 55.MIURA, T.; SUZUKI, K.; KOHATA, N.; TAKEUCHI, H.. Metal binding modes ofAlzheimer?s amyloid beta-peptide in insoluble aggregates and soluble complexes.Biochemistry, 39, n? 23, 7024-7031, 2000. 56.MOORES, B.; DROLLE, E.; ATTWOOD, S.J.; SIMONS, J.; LEOLENKO, Z.. Effect ofsurfaces on amyloid fibril formation. Plos One, 6, n? 10, 1-10, 2011. 57.MUDHER, A.; LOVESTONE, S.. Alzheimer?s disease-do tauists and Baptists finallyshake hands? Trends Neuroscience, 25, n?1, 22-26, 2002. 58.MURRELL, J.; FARLOW, M.; GHETTI, B.; BENSON, M.D.. A mutation in the amyloidprecursor protein associated whish hereditary Alzheimer?s disease. Science, 254, n? 5028,97-99, 1991. 59.MUTURAJU,S.; MAITI, P.; SOLANKI, P.; SHARMA, A.K.; AMITABH; SINGH, S.B.,PRASAD, D.; LLAVAZHAGAN, G.. Acethycholinesterase inhibitors enhance cognitivefunctions in rats following hypobaric hypoxia. Behavioural brain research, 203, n? 1, 1-14, 2009. 60.National Institutes of Health. (julho 2011). National Institute on Aging ? NationalInstitutes of Health: Dispon?vel em:?http://www.nia.nih.gov/sites/defout/files/alzheimers_disease_fact_sheet_0.pdf ?.Acessoem maio de 2013. 61.NIE, Q.; DU, X.G.; GENG, M.Y.. Small molecule inhibitors of amil?ideamiloide betapeptide aggregation as a potential therapeutic strategy for Alzheimer?s disease. ActaPharmacological Sinica, 32, 545-551, 2011. 62.NIELSBERTH, C.; DANIELSSON, A.W.; ECKMAN, C.B.; CONDRON, M.M.;AXELMAN, K.; FORSELL, C.; STENH, C.; LUTHMAN, J.; TEPLOW, D.B.;YOUNKIN, S.G.; N?SLUND, J.; LANNFELT, L.. The ?Artic? APP mutation (E693G)causes Alzheimer?s disease by enhanced A-beta protofibril formation. NatureNeuroscience, 4, 887-893, 2001. 63.ORHAN, I. E.. Potential of natural products of herbal origin as monoamine oxidaseinhibitors. Current Pharmaceutical Design, 22, n? 3, 268-276, 2016. 64.PARSONS, C.G.; ST?FFLER, A.; DANYSZ, W.. Memantine: a NMDA receptorantagonist that improves memory by restoration of homeostasis that glutamatergic system?too little activation is bad, too much is even worse. Neuropharmacology, 53, n? 6, 699-723, 2007. 65.PETERSON, G.L.. A simplification of the protein assay method of Lowry et al. Which ismore generally applicable. Analytical Biochemistry, 83, 346-356, 1977. 66.PUZZO, D.; VITOLO, O.; TRINCHESE, F.; JACOB, J.P.; PALMIERI, A.; ARANCIO,O.. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsiveelement-binding protein pathway during hippocampal synaptic plasticity. JournalNeuroscience, 25, n? 29, 6887-6897, 2005. 67.SAIDO, T.C.; IWATSUBO, T.; MANN, D,M.; SHIMADA, H.; IHARA, Y.;KAWASHIMA, S.. Dominant and differential deposition of distinct beta-amyloid peptidespecies, A beta N3(pE), in senile plaques. Neuron, 14, n? 2, 457-466, 1995. 68.SAYRE, L.M.; PERRY, G.; HARRIS, P.L.; LIU, Y.; SCHOUBERT, K.A.; SMITH, M.A..In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer?sdisease: a central role for bound transition metals. Journal of the Neurochemistry, 74, n?1, 270-279, 2000. 69.SECCI, D.; CARRADONI, S.; BOLASCO, A.; CHIMENTI, P.; Y??ES, M.; ORTUSO,F.; ALCARO, S.. Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. European JournalMedicine Chemistry, 46, 4846-4852, 2011. 70.SELKOE, D.; MANDELKOW, E.; HOLTZMAN, D.. Deciphering Alzheimer?s disease.Cold Spring Harbour Perspectives in Medicine, 2, 1-8, 2012. 71.SELKOE, D.J.. Amyloid beta-protein and the genetics of Alzheimer?s disease. JournalBiological Chemistry, 27, n? 31, 18295-8, 1996. 72. SERRANO-POZO, A.; FROSCH, M.P.; MASLIAH, E.; HYMAN, B.T.. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1-24, 2011. 73.SMITH, M.A.; WEHR, K.; HARRIS, P.L.; SIEDLAK, S,L.; CONNOR, J.R.; PERRY, G..abnormal localization of iron regulatory protein in Alzheimer?s disease. Brain Research,788, n? 1-2, 232-236, 1998. 74.SMITH, M.A.C.; Revista brasileira de psiquiatria, 21, 03, 1999. 75.SOREGHAN, B.; KOSMOSKI, J.; GLABE, C.. Surfactant properties of Alzheimer?s Abeta peptides and the mechanism of amyloid aggregation. Journal Biological Chemistry,269, n? 46, 28551-28554, 1994. 76.SPIRES, T.L.; HYMAN, B.T.. Transgenic models of Alzheimer?s disease: learning fromanimals. Neuro Rx, 2, n? 3, 423-437, 2005. 77.SUCHER, N.J.; AWOBULUYI, M.; CHOI, Y.B.; LIPTON,S.A.. NMDA receptors: fromgenes to channels. Trends in Pharmacological Sciences, 17,n? 10, 349-355, 1996. 78.TABATON, M.; NUNZI, M.G.; XUE, R.; USIAK, M.; AUTILIO-GAMBETTI, L.;GAMBETTI, P.. Soluble amyloid beta-protein is a marker of Alzheimer amyloid in brainbut nor in cerebrospinal fluid. Biochemical and Biophysical Research Communications,200, n? 3, 1598-1603, 1994. 79.T?UGU, V.; KARAFIN, A.; PALUMAA, P.. Binding of zinc(II) and copper (II) to thefull-length Alzheimer?s amyloid-beta peptide. Journal Neurochemistry, 104, n? 5, 1249-1259, 2008. 80.WALSH, D.M.; KLYUBIN, I.; FADEEVA, J.; CULLEN, W.K.; ANWYL, R.; WOLFE,M.S.; ROWAN, M.J.; SELKOE, D.J..Naturally secreted oligomers of amyloid beta-proteinpotently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535-539, 2002. 81.WEINER, M.W.; VEITCH,D.P.; AISEN, P.S.; BECKETT, L.A.; CAIRNS,N.J.; GREEN,R.C.; HARVET, D.; JACK, C.R.; JAGUST, W.; LIU, E.; MORRIS, J.C.; PETERSEN,R.C.; SAYKIN, A.J.; SCHMIDT, M.E.; SHAW, L.; SIUCIAK, J.A.; SOARES, H.;TOGA, A.W.; TROJANOWSKI, J.Q.. The Alzheimer?s disease neuroimaging initiative: areview of papers published since its inception. Alzheimer?s & Dementia, 8, n? 1, S1-S68,2012. 82.WILCOCK, G.K.; ESIRI, M.M.; BOWEN, D.M.; SMITH, C.C.T.. Alzheimer?s disease:correlation of cortical choline acethyltransferase activity with the severity of dementia andhistological abnormalities. Journal of the Neurological Sciences, 57, n? 2-3, 407-417,1982. 83.WISHIK, C.M.; NOVAK, M.; EDWARDS, P.C.; KLUG, A.; TICHELAAR, W.;CROWTHER, R.A.. Proc. Natl.Acad. Sci. U.S.A., 85, 4884, 1988. 84.YANG, D.S.; McLAURIN, J.; QIN,K.; WESTAWAY, D.; FRASER, P.E.. Examining thezinc binding site of the amyloid-beta peptide. European Journal Biochemistry, 267, n?22, 6692-6698, 2000. 85.YOUDIM, M.B.; BAKHLE, Y.S.. Monoamine oxidase: isoforms and inhibitors inParkinson?s disease and depressive illness. British Journal Pharmacology, 147, 287-296,2006. 86.YOUDIM, M.B.; WEINSTOCK, M.. Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyraminepotentiation. Neurotoxicology, 25, n? 1-2, 243-250, 2004. 87.ZHENG, W.H.; BASTIANETTO, S.; MENNICKEN, F.; MA, W.; KAR, S.. Amyloid betapeptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septalcultures. Neuroscience, 115, n? 1, 201-211, 2002. 88.ZHU, X.; SU, B.; WANG, X.; SMITH, M.A.; PERRY, G.. Causes of oxidative stress inAlzheimer?s disease. Cellular and Molecular Life Sciences, 64, n? 17, 2202-2210, 2007.Monoamina oxidaseCumarinaInibidores de enzimasMonoamine oxidaseCoumarinEnzymes InhibitorsQu?micaEstudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarinaStudy of the inhibition of monoamine oxidase by new synthetic compounds derived from coumarininfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Lin Machado de Lima.pdf.jpg2019 - Lin Machado de Lima.pdf.jpgimage/jpeg2233http://localhost:8080/tede/bitstream/jspui/5322/4/2019+-+Lin+Machado+de+Lima.pdf.jpg2b6920b5044aacfb0a882404d9f676fcMD54TEXT2019 - Lin Machado de Lima.pdf.txt2019 - Lin Machado de Lima.pdf.txttext/plain68702http://localhost:8080/tede/bitstream/jspui/5322/3/2019+-+Lin+Machado+de+Lima.pdf.txtbc4816f30e30c07cc85ca727c22642f3MD53ORIGINAL2019 - Lin Machado de Lima.pdf2019 - Lin Machado de Lima.pdfapplication/pdf931751http://localhost:8080/tede/bitstream/jspui/5322/2/2019+-+Lin+Machado+de+Lima.pdfb85decb15478a60703cdbcccab374702MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/5322/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/53222022-04-30 17:25:07.667oai:localhost:jspui/5322Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-04-30T20:25:07Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina
dc.title.alternative.eng.fl_str_mv Study of the inhibition of monoamine oxidase by new synthetic compounds derived from coumarin
title Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina
spellingShingle Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina
Lima, Lin Machado de
Monoamina oxidase
Cumarina
Inibidores de enzimas
Monoamine oxidase
Coumarin
Enzymes Inhibitors
Qu?mica
title_short Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina
title_full Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina
title_fullStr Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina
title_full_unstemmed Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina
title_sort Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina
author Lima, Lin Machado de
author_facet Lima, Lin Machado de
author_role author
dc.contributor.advisor1.fl_str_mv Salles, Cristiane Martins Cardoso de
dc.contributor.advisor1ID.fl_str_mv CPF: 035.399.287-90
dc.contributor.advisor-co1.fl_str_mv Bastos, Frederico Freire
dc.contributor.advisor-co1ID.fl_str_mv CPF: 082.617.467-76
dc.contributor.referee1.fl_str_mv Vieira, Andr? Luiz Gomes
dc.contributor.referee2.fl_str_mv Fernandes, Daniele Corr?a
dc.contributor.referee3.fl_str_mv Santos, Andr? Marques dos
dc.contributor.referee4.fl_str_mv Bastos Neto, Jayme da Cunha
dc.contributor.authorID.fl_str_mv CPF: 805.264.627-87
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4443098894988565
dc.contributor.author.fl_str_mv Lima, Lin Machado de
contributor_str_mv Salles, Cristiane Martins Cardoso de
Bastos, Frederico Freire
Vieira, Andr? Luiz Gomes
Fernandes, Daniele Corr?a
Santos, Andr? Marques dos
Bastos Neto, Jayme da Cunha
dc.subject.por.fl_str_mv Monoamina oxidase
Cumarina
Inibidores de enzimas
topic Monoamina oxidase
Cumarina
Inibidores de enzimas
Monoamine oxidase
Coumarin
Enzymes Inhibitors
Qu?mica
dc.subject.eng.fl_str_mv Monoamine oxidase
Coumarin
Enzymes Inhibitors
dc.subject.cnpq.fl_str_mv Qu?mica
description Monoamine oxidase [EC 1.4.3.4 (MAO)] is an enzyme located in the outer membrane of the mitochondria, which uses flavin adenine dinucleotide (FAD) as a cofactor to catalyze the oxidant conversion of an amine in its corresponding aldehyde, also producing ammonia and hydrogen peroxide. MAO activity regulates the levels of biogenic amines present in tissues, especially in the brain. MAO exists as two proteins: MAO-A and MAO-B. These isoforms were defined primarily by substrate affinities and inhibitor sensitivity. Accordingly, MAO-A oxidizes, preferably, serotonin, melatonin, noradrenaline and adrenaline. MAO-B preferably oxidizes phenylethylamine, an alkaloid from the metabolism of phenylalanine. The ingestion of phenylethylamine promotes the release of dopamine that acts in the brain stimulating euphoria. Concerning the inhibitors, MAO-A is preferentially inhibited by clorgiline. MAO-B is inhibited by deprenyl and pargyline. These inhibitors can be used in the treatment of degenerative brain diseases. Since studies have shown that molecules derived from coumarins achieved excellent results as inhibitors of these enzymes, several new drugs derived from coumarin have been synthesized, which a few are very promising in the treatment of Alzheimer's and Parkinson's diseases. This study aimed to promote in vitro inhibition tests of MAO with new substances derived from coumarin. Among the compounds tested, two of them were shown to be promising as MAO inhibitors of mitochondrial fraction of wistar rat brain, reaching more than 60% inhibition of monoamine oxidase activity.
publishDate 2019
dc.date.issued.fl_str_mv 2019-07-01
dc.date.accessioned.fl_str_mv 2022-01-19T18:51:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Lin Machado de. Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina. 2019. 33 f. Disserta??o (Mestrado em Qu??mica) - Instituto de Qu??mica, Departamento de Bioqu??mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/5322
identifier_str_mv LIMA, Lin Machado de. Estudo da inibi??o da monoamina oxidase por novos compostos sint?ticos derivados de cumarina. 2019. 33 f. Disserta??o (Mestrado em Qu??mica) - Instituto de Qu??mica, Departamento de Bioqu??mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.
url https://tede.ufrrj.br/jspui/handle/jspui/5322
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv 1.(JPND), E.J.-N.([s.d.]). de JPND Research. Dispon?vel em:?http://www.neurodegenerationresearch.eu/about/what/?. Acesso em maio de 2013. 2.Alzheimer?s association. , de Alzheimer?s Australia. Dispon?vel em:?http://www.fightdementia.org.au/understanding-dementia/section-1-about-dementia.aspx?. Acesso em maio de 2013. 3.ANNAMALAI, B.; WON, J.S.; CHOI, S.; SINGH, I.; SINGH, A.K.. Role of s-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation. Biochemical andBiophysical Research Communications, 458, n?1, 214-219, 2015. 4.Associa??o Brasileira de Alzheimer (Abraz). Dispon?vel em: ?http://www.portalnovidade.com.br/materia/7315/doenca-neurodegenerativa-acomete-milhoes-em-todo-o-mundo.html?. Acesso em 15 de abril de 2015. 5.AZIMI, S.; RAUK, A.. On the involvement of copper binding to the N-terminus of theamyloid beta peptide of Alzheimer?s disease: a computational study on model systems.International Journal of Alzheimer?s Disease, 2011, Article ID 539762, 1-15, 2011. 6.BARNHAM, K.J.; MASTERS, C.L.; BUSH, A.I.. Neurodegenerative diseases andoxidative stress. Nature Reviews Drugs Discovery, 3, 205-214, 2004. 7.BARNHAN, K.J.; BUSH, A.L.. Metals in Alzheimer?s and Parkinson?s diseases. CurrentOpinion in Chemical Biology, 12, n? 2, 222-228, 2008. 8.BARREIROS, A.L.B.S.; DAVID, J.M.; DAVID, J.P.. Estresse oxidativo: rela??o entregera??o de esp?cies relativas e defesa do organismo. Qu?mica nova, 29, n? 1, 113-123,2006. 9.BARTUS, R.T.; DEAN, R.L.; BEER, B.; LIPPA, A.S.. The cholinergic hypothesis ofgeriatric memory dysfunctions. Science, 217, 408-417, 1982. 10.BENNET, B.M.; REYNOLDS, J.N.; PRUSKY, G.T.; DOUGLAS, R.M.; SUTHERLAND,R.J.; THATCHER, G.R.. Cognitive deficits in rat after forebrain cholinergic depletion arereversed by a novel no mimetic nitrate ester. Neuropsychopharmacology, 32, n? 3, 505-513, 2006. 11.BERGER-SWEENEY, J.; ARNOLD, A.; GABEAU, D,; MILLS, J.. Sex differences inlearning and memory in mice: effects of sequence of testing and cholinergic blockade.Beharvioral Neuroscience, 109, n? 5, 859-873, 1995. 12.BUSH, A.L.; PETTINGELL, W.H.; MULTHAUP, G.; d PARADIS, M.; VONSATTEL,J.P.; GUSELLA, J.F.; BEYREUTHER, K.; MASTERS, C.L.; TANZI, R.E.. Rapideinduction of Alzheimer A beta amyloid formation by zinc. Science, 265, n? 5177, 1464-1467, 1994. 13.CHARTIER-HARLIN, M.C.; CROWFORD, F.; HOULDEN, H.; WARREN, A.;HUGHES, D.; FIDANI, L.; GOATE, A.; ROSSOR, M.; ROQUES, P.; HARDY, J.. Early-onset Alzheimer?s disease caused by mutations st codon 717 of Beta-amyloid precursorprotein gene. Nature, 353, 844-846, 1991. 14.CITRON, M.; OUTERSDORF, T.; HAASS, C.; McCONLOQUE, L.; HUNG, A.Y.;SEUBERT, P.; VIGO-PELFREY, C.; LIEBERBURG, I.; SELDKOE, D.J.. Mutation ofbeta-amyloid precursor protein in familial Alzheimer?s disease increases beta-proteinproduction. Nature, 360, n? 6405, 672-674, 1992. 15.COYLE, J.T.; PRICE, D.L.; DeLONG, M.R.. Alzheimer?s disease: a disorder of corticalcholinergic innervation. Science, 219, 1184-1190, 1983. 16.CRADDOCK, T.J.; TUSZYNSKI, J.A.; CHOPRA, D.; CASEY, N.; GOLDSTEIN, L.E.;HAMEROFF, S.R.; TANZI, R.E.. The zinc dyshomeostasis hypothesis of Alzheimer?sdisease. Plos One, 7, n? 3, 1-16, 2012. 17.DANSHER, G.; JENSEN, K.B.; FREDERICKSON, C.J.; KEMP, K.; ANDREASEN, A.;JUHL, S.; STOLLENBERG, M.; RAVID, R.. Increased amount of zinc in thehippocampus and amygdala of Alzheimer?s disease brains: a proton-induced X-rayemission spectroscopic analysis of cryostat sections from autopsy material. JournalNeuroscience Methods, 76, n? 1, 53-59, 1997. 18.DAVIES, P.; MALONEY, A.J.F.. Selective loss of central cholinergic neurons inAlzheimer?s disease. The Lancet, 308, 1403, 1976. 19.DE FALCO, A.; CUKIERMAN, D.S.; HAUSER-DAVIS, R.A.; REY, N.A.. Doen?a deAlzheimer: hip?teses etiol?gicas e perspectivas de tratamento. Qu?mica Nova, 39, n? 1,1678-17064, 2016. 20.DEIBEL, M.A.; EHMANN, W.D.; MARKESBERY, W.R.. Copper, iron, and zincimbalances in severely degenerated brain regions in Alzheimer?s disease: possible relationto oxidative stress. Journal of the Neurological Sciences, 143, n? 1-2, 137-142, 1996. 21.DEUTSH, J.A.. The cholinergic synapse and the site of memory. Science, 174, 788-794,1971. 22.DINGLEDINE, R.; BORGES, K.; BOWIE, D.; TRAYNELIS, S.F.. The glutamatereceptor ion channels. Pharmacology Reviews, 51, n? 1, 7-61, 1999. 23.DOMINGUEZ, J.L.; FERN?NDEZ,-NIETO, F.; BREA,J.M.; CATTO, M.; SOTO-OTERO,R.. 8-Aminomethyl-7-hydroxy-4-methylcoumarins as multitarget leads forAlzheimer?s Disease. Chemistry Select, 1, 2742-2749, 2016. 24.DRACHMAN, D.A.; SAHAKIAN, B.J.. Memory and cognitive function in the elderly: Apreliminary trial of physostigmine. Archives of Neurology, 37, (10), 674-675, 1980. 25.FINCKH, U.; KUSCHEL, C.; ANAGNOSOULI, M.; PATSOURIS, E.; PANTS, G.V.;GATZONIS, S.; KAPAKI, E.; DAVAKI, P.; LAMSZUS, K.; STAVROU, D.; GAL, A..Novel mutations and repeated findings of mutations in familial Alzheimer?s disease.Neurogenetics, 6, n? 2, 85-89, 2005. 26.FOLLMER, C.; BEZERRA-NETO, H.J.C.. F?rmacos multifuncionais: monoaminaoxidase e a-sinucle?na como alvos terap?uticos na doen?a de Parkinson. Qu?mica Nova,36, n? 2, 1-12, 2013. 27.GANDY, S.. The role of cerebral amyloid beta accumulation in forms of Alzheimer?sdisease. The Journal of Clinical Investigation, 115, (5), 1121-1129, 2005. 28.GIACCONE, G.; TAGLIAVINI, F.; LINOLI, G.; BOURAS, C.; FRIGERIO, L.;FRANGIONE, B.; BUGIANE, O.. Down patients: Extracellular preamyloyd depositsprecede neuritic degeneration and senile plaques. Neuroscience Letters, 97, (1-2), 232-238,1989. 29.GOATE, A.; CHARTIER-HARLIN, M.C.; MULLAN, M.; BROWN, J.; CRAWFORD,F.; FIDANE,L.; GIUFFRA, L.; HAYNES, A.; IRVING, N.; JAMES, L.. Nature, 349,704-706, 1991. 30.GREEN, A.; ELLIS, K.A.; ELLIS, J,; BARTHOLOMEUSZ,C.F.; LLIC,S.; CROFT,R.J.;PHAN,K.L.; NATHAN,P.J.. Muscarinic and nicotinic receptor modulation of object andspatial n-back working memory in humans. Pharmacology Biochemistry and Behaviour,81, n? 3, 575-584, 2005. 31.GREENAMYRE, J.T.; YOUNG, A.B.. Excitatory amino acids and Alzheimer?s disease.Neurobiology of anging, 10, n? 5, 593-602, 1989. 32.GREENAMYRE, J.T.;MARAGOS,W.F.; ALBIN, R.L.; PENNEY, J.B.; YOUNG, A.B..Glutamate transmission and toxicity in Alzheimer?s disease. Proq.Neuropsychopharmacology Biology Psychiatry, 12, n? 4, 421-430, 1988. 33.GU, L.; LIU, C.; GUO, Z.. Structural insights into Abeta42 oligomers using site-directedspin labelling. Journal Biological Chemistry, 288, n? 26, 18673-18683, 2013. 34.HAASS, C.; HUNG, A.Y.; SELKOE, D.J.; TEPLOW, D.B.. Mutations associated with alocus for familial Alzheimer?s disease result in alternative processing of amyloid beta-protein precursor. Journal Biologic Chemistry, 269, 17741-17748, 1994. 35.HANE, F.; LEONENKO, Z.. Effect of metal on kinetic pathways of amyloid-betaaggregation. Biomolecules, 4, n? 1, 101-116, 2014. 36.HANE, F.; TRAN, G.; ATTWOOD, S.J.; LEONENKO, Z.. Cu(+2) affects amyloid ?Beta(1-42) aggregation by increasing peptide-peptide binding forces. Plos One, 8, n? 3, 1-8,2013. 37.HARDMAN, J.G.; LIMBIRD, L.E.; GILMAN, A.G.; GOODMAN, L.S.; GILMAN, A.;Goodman & Gilman's the pharmacological basis of therapeutics, McGraw-Hill: NewYork, 1996. 38.HARDY, J.A.; HIGGINS, G.A.. Alzheimer?s disease: the amyloid cascade hypothesis.Science, 256, n? 5054, 184-185, 1992. 39.HASS, C.; SCHLOSSMACHER, M.G.; HUNG, A.Y.; VIGO-PELFREY, C.; MELLON,A.; OSTSZEWSKI, B.L.; LIEBERBURG, I.; KOO, E.H.; SCHENK, D.; TEPLOW, D.B..Nature, 359, 322-325, 1992. 40.HASSELMO, M.E.. The role of acethylcholine in learning and memory. Current Opinionin Neurobiology, 16, n? 6, 710-715, 2006. 41.HE, W.; BARROW, C.J.; The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides foundin senile plaque have greater beta-sheet forming and aggregation propensities in vitro thanfull-length A beta. Biochemistry, 38, n? 33, 10871- 1877, 1999. 42.HENDRIKS, L.; van DUIJN, C.M.; CRAS, P.; CRUTS, M.; Van Hul, W.; vanHARSKAMP, F.; WARREN, A.; McINNIS, M.G.; ANTONARAKIS, S.E.; MARTIN,J.J.. Nature Genetics, 1, 218-221, 1992. 43.HUANG, M.;XIE, S.S.; JIANG, N.; LAN, J.S.; KONG, L.Y.; WNAG, X.B..Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-?-amyloid (A?) aggregation and metal chelation properties against Alzheimer?s. Bioorganic& Medicinal Chemistry Letters, 25, 508-513, 2015. 44.IWATSUBO, T.; MANN, D.M.; ODAKA, A.; SUZUKI, N.; IHARA, Y.. Amyloid betaprotein (A beta) deposition: A beta 42(43) precedes a beta 40 in Down syndrome. Annalsof Neurology, 37, n? 3, 294-299, 1995. 45.K?SA, P.;RANKONCZAY, Z.; GULYA,K.. The cholinergic system in Alzheimer?sdisease. Progress in Neurobiology, 52, n? 6, 511-535, 1997. 46.KAYED, R.; SOKOLOV, Y.; EDMONDNS, B.; McINTIRE, T.M.; MILTON, S.C.;HALL, J.E.; GLABE, C.G.. permeabilization of lipid bilayers is a common conformation-dependent activity of volume amyloid oligomers in protein misfolding diseases. JournalBiological Chemistry, 279, 46363-46366, 2004. 47.KLEIN, W,L.; KRAFFT, G.A.; FINCH, C.E.. Targeting small A-beta oligomers: thesolution to an Alzheimer?s disease conundrum? Trends in Neurosciences, 24, n?4, 219-224, 2001. 48.KRAJL, M.. A rapid microfluorimetric determination of monoamine oxidase. BiochemicalPharmacology, 14, 1683-1685, 1965. 49.LEE, J.; CULYBA, E.K.; POWERS, E.T.; KELLY, J.W.. amyloid-beta forms fibrils bynucleated conformational conversation of oligomers. Nature Chemical Biology, 7, 602-609, 2011. 50.LEVY, E.; CARMAN, M.D.; FERNANDEZ-MADRID, I.J.; POWER, M.D.;LIEBERBURG, I.; van DUINEN, S.G.; BOTS, G.T.; LUYENDIJK, W.; FRANGIONE,B.. Mutation of the Alzheimer?s disease amyloid gene in hereditary cerebral hemorrhage,Dutch type. Science, 248, n? 4959, 1125-1126, 1990. 51.LOVELL, M.A.; ROBERTSON, J.D.; TEESDALE, W.J.; CAMPBELL, J.L.;MARKESBERY, W.R.. Copper, iron, and zinc in Alzheimer?s disease senile plaques.Journal of the Neurological Sciences, 158, n? 1, 47-52, 1998. 52.MATOS, M.J.. Potent and selective MAO-B inhibitory activity: Amino-versus nitro-3-arylcoumarin derivatives. Bioorganic & Medicinal Chemistry Letters, 25, 642-648, 2015. 53.MATTSON, M.P.. Cellular actions of beta-amyloid precursor protein and its soluble andfibrillogenic derivates. American Physiological Society Reviews, 77, n? 4, 1081- 1090,1997. 54.MAYA, A. ([s.d.]). Masters Neurosciences ? Universit? de Strasbourg: Dispon?vel em?http://neuromaster.ustrasburg.fr/forms%20and%20PDF/Biography_of_Alois_Alzheimer%20by%20.pdf?. Acesso em maio de 2013. 55.MIURA, T.; SUZUKI, K.; KOHATA, N.; TAKEUCHI, H.. Metal binding modes ofAlzheimer?s amyloid beta-peptide in insoluble aggregates and soluble complexes.Biochemistry, 39, n? 23, 7024-7031, 2000. 56.MOORES, B.; DROLLE, E.; ATTWOOD, S.J.; SIMONS, J.; LEOLENKO, Z.. Effect ofsurfaces on amyloid fibril formation. Plos One, 6, n? 10, 1-10, 2011. 57.MUDHER, A.; LOVESTONE, S.. Alzheimer?s disease-do tauists and Baptists finallyshake hands? Trends Neuroscience, 25, n?1, 22-26, 2002. 58.MURRELL, J.; FARLOW, M.; GHETTI, B.; BENSON, M.D.. A mutation in the amyloidprecursor protein associated whish hereditary Alzheimer?s disease. Science, 254, n? 5028,97-99, 1991. 59.MUTURAJU,S.; MAITI, P.; SOLANKI, P.; SHARMA, A.K.; AMITABH; SINGH, S.B.,PRASAD, D.; LLAVAZHAGAN, G.. Acethycholinesterase inhibitors enhance cognitivefunctions in rats following hypobaric hypoxia. Behavioural brain research, 203, n? 1, 1-14, 2009. 60.National Institutes of Health. (julho 2011). National Institute on Aging ? NationalInstitutes of Health: Dispon?vel em:?http://www.nia.nih.gov/sites/defout/files/alzheimers_disease_fact_sheet_0.pdf ?.Acessoem maio de 2013. 61.NIE, Q.; DU, X.G.; GENG, M.Y.. Small molecule inhibitors of amil?ideamiloide betapeptide aggregation as a potential therapeutic strategy for Alzheimer?s disease. ActaPharmacological Sinica, 32, 545-551, 2011. 62.NIELSBERTH, C.; DANIELSSON, A.W.; ECKMAN, C.B.; CONDRON, M.M.;AXELMAN, K.; FORSELL, C.; STENH, C.; LUTHMAN, J.; TEPLOW, D.B.;YOUNKIN, S.G.; N?SLUND, J.; LANNFELT, L.. The ?Artic? APP mutation (E693G)causes Alzheimer?s disease by enhanced A-beta protofibril formation. NatureNeuroscience, 4, 887-893, 2001. 63.ORHAN, I. E.. Potential of natural products of herbal origin as monoamine oxidaseinhibitors. Current Pharmaceutical Design, 22, n? 3, 268-276, 2016. 64.PARSONS, C.G.; ST?FFLER, A.; DANYSZ, W.. Memantine: a NMDA receptorantagonist that improves memory by restoration of homeostasis that glutamatergic system?too little activation is bad, too much is even worse. Neuropharmacology, 53, n? 6, 699-723, 2007. 65.PETERSON, G.L.. A simplification of the protein assay method of Lowry et al. Which ismore generally applicable. Analytical Biochemistry, 83, 346-356, 1977. 66.PUZZO, D.; VITOLO, O.; TRINCHESE, F.; JACOB, J.P.; PALMIERI, A.; ARANCIO,O.. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsiveelement-binding protein pathway during hippocampal synaptic plasticity. JournalNeuroscience, 25, n? 29, 6887-6897, 2005. 67.SAIDO, T.C.; IWATSUBO, T.; MANN, D,M.; SHIMADA, H.; IHARA, Y.;KAWASHIMA, S.. Dominant and differential deposition of distinct beta-amyloid peptidespecies, A beta N3(pE), in senile plaques. Neuron, 14, n? 2, 457-466, 1995. 68.SAYRE, L.M.; PERRY, G.; HARRIS, P.L.; LIU, Y.; SCHOUBERT, K.A.; SMITH, M.A..In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer?sdisease: a central role for bound transition metals. Journal of the Neurochemistry, 74, n?1, 270-279, 2000. 69.SECCI, D.; CARRADONI, S.; BOLASCO, A.; CHIMENTI, P.; Y??ES, M.; ORTUSO,F.; ALCARO, S.. Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. European JournalMedicine Chemistry, 46, 4846-4852, 2011. 70.SELKOE, D.; MANDELKOW, E.; HOLTZMAN, D.. Deciphering Alzheimer?s disease.Cold Spring Harbour Perspectives in Medicine, 2, 1-8, 2012. 71.SELKOE, D.J.. Amyloid beta-protein and the genetics of Alzheimer?s disease. JournalBiological Chemistry, 27, n? 31, 18295-8, 1996. 72. SERRANO-POZO, A.; FROSCH, M.P.; MASLIAH, E.; HYMAN, B.T.. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1-24, 2011. 73.SMITH, M.A.; WEHR, K.; HARRIS, P.L.; SIEDLAK, S,L.; CONNOR, J.R.; PERRY, G..abnormal localization of iron regulatory protein in Alzheimer?s disease. Brain Research,788, n? 1-2, 232-236, 1998. 74.SMITH, M.A.C.; Revista brasileira de psiquiatria, 21, 03, 1999. 75.SOREGHAN, B.; KOSMOSKI, J.; GLABE, C.. Surfactant properties of Alzheimer?s Abeta peptides and the mechanism of amyloid aggregation. Journal Biological Chemistry,269, n? 46, 28551-28554, 1994. 76.SPIRES, T.L.; HYMAN, B.T.. Transgenic models of Alzheimer?s disease: learning fromanimals. Neuro Rx, 2, n? 3, 423-437, 2005. 77.SUCHER, N.J.; AWOBULUYI, M.; CHOI, Y.B.; LIPTON,S.A.. NMDA receptors: fromgenes to channels. Trends in Pharmacological Sciences, 17,n? 10, 349-355, 1996. 78.TABATON, M.; NUNZI, M.G.; XUE, R.; USIAK, M.; AUTILIO-GAMBETTI, L.;GAMBETTI, P.. Soluble amyloid beta-protein is a marker of Alzheimer amyloid in brainbut nor in cerebrospinal fluid. Biochemical and Biophysical Research Communications,200, n? 3, 1598-1603, 1994. 79.T?UGU, V.; KARAFIN, A.; PALUMAA, P.. Binding of zinc(II) and copper (II) to thefull-length Alzheimer?s amyloid-beta peptide. Journal Neurochemistry, 104, n? 5, 1249-1259, 2008. 80.WALSH, D.M.; KLYUBIN, I.; FADEEVA, J.; CULLEN, W.K.; ANWYL, R.; WOLFE,M.S.; ROWAN, M.J.; SELKOE, D.J..Naturally secreted oligomers of amyloid beta-proteinpotently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535-539, 2002. 81.WEINER, M.W.; VEITCH,D.P.; AISEN, P.S.; BECKETT, L.A.; CAIRNS,N.J.; GREEN,R.C.; HARVET, D.; JACK, C.R.; JAGUST, W.; LIU, E.; MORRIS, J.C.; PETERSEN,R.C.; SAYKIN, A.J.; SCHMIDT, M.E.; SHAW, L.; SIUCIAK, J.A.; SOARES, H.;TOGA, A.W.; TROJANOWSKI, J.Q.. The Alzheimer?s disease neuroimaging initiative: areview of papers published since its inception. Alzheimer?s & Dementia, 8, n? 1, S1-S68,2012. 82.WILCOCK, G.K.; ESIRI, M.M.; BOWEN, D.M.; SMITH, C.C.T.. Alzheimer?s disease:correlation of cortical choline acethyltransferase activity with the severity of dementia andhistological abnormalities. Journal of the Neurological Sciences, 57, n? 2-3, 407-417,1982. 83.WISHIK, C.M.; NOVAK, M.; EDWARDS, P.C.; KLUG, A.; TICHELAAR, W.;CROWTHER, R.A.. Proc. Natl.Acad. Sci. U.S.A., 85, 4884, 1988. 84.YANG, D.S.; McLAURIN, J.; QIN,K.; WESTAWAY, D.; FRASER, P.E.. Examining thezinc binding site of the amyloid-beta peptide. European Journal Biochemistry, 267, n?22, 6692-6698, 2000. 85.YOUDIM, M.B.; BAKHLE, Y.S.. Monoamine oxidase: isoforms and inhibitors inParkinson?s disease and depressive illness. British Journal Pharmacology, 147, 287-296,2006. 86.YOUDIM, M.B.; WEINSTOCK, M.. Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyraminepotentiation. Neurotoxicology, 25, n? 1-2, 243-250, 2004. 87.ZHENG, W.H.; BASTIANETTO, S.; MENNICKEN, F.; MA, W.; KAR, S.. Amyloid betapeptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septalcultures. Neuroscience, 115, n? 1, 201-211, 2002. 88.ZHU, X.; SU, B.; WANG, X.; SMITH, M.A.; PERRY, G.. Causes of oxidative stress inAlzheimer?s disease. Cellular and Molecular Life Sciences, 64, n? 17, 2202-2210, 2007.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Qu?mica
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/5322/4/2019+-+Lin+Machado+de+Lima.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/5322/3/2019+-+Lin+Machado+de+Lima.pdf.txt
http://localhost:8080/tede/bitstream/jspui/5322/2/2019+-+Lin+Machado+de+Lima.pdf
http://localhost:8080/tede/bitstream/jspui/5322/1/license.txt
bitstream.checksum.fl_str_mv 2b6920b5044aacfb0a882404d9f676fc
bc4816f30e30c07cc85ca727c22642f3
b85decb15478a60703cdbcccab374702
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220356393533440