Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Souza, Clitor Junior Fernandes de lattes
Orientador(a): Rojas, Edwin Elard Garcia
Banca de defesa: Rojas, Edwin Elard Garcia, Costa, Bernardo de S?, Sabino, Silvio Jos?, Carvalho, Carlos Wanderlei Piler, Barbosa Junior, Jos? Lucena
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/3122
Resumo: Proteins and polysaccharides are the most frequently used hydrocolloids in the food industry, and their interaction can provide products such as complexes coacervates. Ovalbumin-pectin coacervate complexes was analyzed in various NaCl concentrations with different protein:polysaccharide ratios by measuring zeta (?)-potentials, and by X-ray diffraction. Changes in protein concentrations led to shifts in the region of insoluble complex formation (at the isoelectric point). When NaCl concentrations increased from 0.1 to 0.4 M, complex dissociation were suppressed. X-ray diffraction of the ovalbumin-pectin coacervate complex showed a partially defined crystalline region from 27-20? suggesting that the structure of the complex is more organized than the individual amorphous polymers. The complexation between lysozyme (Lyso) and citrus pectin (Pec) were studied in situ by acidification (12.0-1.0) using zeta potential and turbidity measurements. The complexes were analyzed in different NaCl concentrations with different protein:polysaccharide ratios. In the ratio 1:1 with 0.01 mol/L of NaCl the region of the formation of insoluble complex corresponded a pH range 7.0 to 2.0 which represent a wide range to apply this complex on different matrix food. When NaCl concentration was increased from 0.01 mol/L to 0.2 mol/L was possible to see a progressive reduction of turbidity and the pH range of complex formation achieving in a total suppression of complex in 0.4 mol/L. The microscopy images of samples revealed that complexes presented spheroid like appearance with the heterogeneous structure containing a single core polymeric phase. The Lyso/Pectin complex particles described here may represents a great potential in various commercial applications in the biotechnological The complexation between lysozyme/?-carrageenan and ovalbumin/?-carrageenan was studied in situ by acidification (12.0-1.0) using zeta potential, turbidity and rheological measurements. The complexes were analyzed in different NaCl concentrations with different protein/polysaccharide ratios. As the protein:polysaccharide ratio increased from 1:1 to 10:1, critical pHs shifted to higher pHs with ovalbumin/?-carrageenan complexes followed by a decrease of G? values of the ratios 5:1 and 10:1. The increase of ratio with lysozyme/?-carrageenan complexes suppressed the critical pH transitions points forming large insoluble complexes from pH 12.0 to 1.0 and the values of G? increased simultaneously reaching the higher value of the ratio 10:1. Addition of salt to the ovalbumin/?-carrageenan and lysozyme/?-carrageenan mixtures suppressed the electrostatic interaction between proteins and ?-carrageenan. The rheological data associated with microscopy images showed that intrapolymer complexes with heterogeneous structure were formed for both complex, and we suggest that complexes represent a great potential to improving texture, mechanical stability, consistency, and taste of food products. The complexation between lysozyme (Lyso)/xanthan gum (XG) and ovalbumin (Ova)/xanthan gum was studied in situ by acidification (12.0-1.0) using zeta potential, turbidity, Fourier transform infrared spectroscopy (FTIR), and rheological measurements. The complexes were analyzed in different NaCl concentrations with different protein/polysaccharide ratios. The increase of the ratio from 2:1 to 10:1 for Lyso/XG complexes suppressed the pH? forming insoluble at pH 12.0, however, the values of G? decreased at ratio 5:1 and 10:1 indicating that excess of protein impact on compacted the network structures. Addition of salt in the Ova/XG and Lyso/XG mixtures suppressed the electrostatic interaction between proteins and XG shifting to lowering pHs the critical pH transitions points. The rheological data associated with microscopy images showed that interconnected gel-like network structure with heterogeneous structure were formed for both complex, and it is suggested that complexes represent a great potential to improve sensorial properties of food products. Formation of Lysozyme-Xanthan Gum (Lyso-XG) gels were studied with the objective to identify the role of individual biopolymer as well as the influence of their mixing ratio on gelation mechanism, texture properties, pores, and syneresis. The excess of protein affected the compaction of gel, which resulted in gels with dense clusters, with poorer water-bolding capacity. The gel strength mainly depended on the XG content, hence, at the ratio 1:2 hardness and held-water increased and final G' was almost five times stronger than ratio 1:1. Lyso-XG gels produced without heat treatment and with low water content presented a great potential for application in the food and pharmaceutical industry. Finally, the influence of protein (lysozyme and ?-lactoglobulin) on hydrogels formation with xanthan gum was studied as a function of three different solid total concentrations. In general, the critical strain enlarged as far as the solid total of the system was increased, and gels became more stronger and rigid. Comparing the value of G' and G'' between gels produced with lysozyme, and ?-Lactoglobulin, it was noted that Lyso-XG gels were stronger than BLG-XG. This experimental study elucidated fundamental aspects about texture formation of hydrogels and it is also suggested that results can be used by biomedical, pharmaceutical, and food industries to develop new functional semi-solid products with high water and low protein content.
id UFRRJ-1_b930ccd448a57bb196d8777476c18284
oai_identifier_str oai:localhost:jspui/3122
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Rojas, Edwin Elard Garcia014.548.996-54Rojas, Edwin Elard GarciaCosta, Bernardo de S?Sabino, Silvio Jos?Carvalho, Carlos Wanderlei PilerBarbosa Junior, Jos? Lucena102.860.027-52http://lattes.cnpq.br/7052381884244677Souza, Clitor Junior Fernandes de2019-11-28T18:12:52Z2015-10-02SOUZA, Clitor Junior Fernandes de. Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos. 2015. 161 f. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2015.https://tede.ufrrj.br/jspui/handle/jspui/3122Proteins and polysaccharides are the most frequently used hydrocolloids in the food industry, and their interaction can provide products such as complexes coacervates. Ovalbumin-pectin coacervate complexes was analyzed in various NaCl concentrations with different protein:polysaccharide ratios by measuring zeta (?)-potentials, and by X-ray diffraction. Changes in protein concentrations led to shifts in the region of insoluble complex formation (at the isoelectric point). When NaCl concentrations increased from 0.1 to 0.4 M, complex dissociation were suppressed. X-ray diffraction of the ovalbumin-pectin coacervate complex showed a partially defined crystalline region from 27-20? suggesting that the structure of the complex is more organized than the individual amorphous polymers. The complexation between lysozyme (Lyso) and citrus pectin (Pec) were studied in situ by acidification (12.0-1.0) using zeta potential and turbidity measurements. The complexes were analyzed in different NaCl concentrations with different protein:polysaccharide ratios. In the ratio 1:1 with 0.01 mol/L of NaCl the region of the formation of insoluble complex corresponded a pH range 7.0 to 2.0 which represent a wide range to apply this complex on different matrix food. When NaCl concentration was increased from 0.01 mol/L to 0.2 mol/L was possible to see a progressive reduction of turbidity and the pH range of complex formation achieving in a total suppression of complex in 0.4 mol/L. The microscopy images of samples revealed that complexes presented spheroid like appearance with the heterogeneous structure containing a single core polymeric phase. The Lyso/Pectin complex particles described here may represents a great potential in various commercial applications in the biotechnological The complexation between lysozyme/?-carrageenan and ovalbumin/?-carrageenan was studied in situ by acidification (12.0-1.0) using zeta potential, turbidity and rheological measurements. The complexes were analyzed in different NaCl concentrations with different protein/polysaccharide ratios. As the protein:polysaccharide ratio increased from 1:1 to 10:1, critical pHs shifted to higher pHs with ovalbumin/?-carrageenan complexes followed by a decrease of G? values of the ratios 5:1 and 10:1. The increase of ratio with lysozyme/?-carrageenan complexes suppressed the critical pH transitions points forming large insoluble complexes from pH 12.0 to 1.0 and the values of G? increased simultaneously reaching the higher value of the ratio 10:1. Addition of salt to the ovalbumin/?-carrageenan and lysozyme/?-carrageenan mixtures suppressed the electrostatic interaction between proteins and ?-carrageenan. The rheological data associated with microscopy images showed that intrapolymer complexes with heterogeneous structure were formed for both complex, and we suggest that complexes represent a great potential to improving texture, mechanical stability, consistency, and taste of food products. The complexation between lysozyme (Lyso)/xanthan gum (XG) and ovalbumin (Ova)/xanthan gum was studied in situ by acidification (12.0-1.0) using zeta potential, turbidity, Fourier transform infrared spectroscopy (FTIR), and rheological measurements. The complexes were analyzed in different NaCl concentrations with different protein/polysaccharide ratios. The increase of the ratio from 2:1 to 10:1 for Lyso/XG complexes suppressed the pH? forming insoluble at pH 12.0, however, the values of G? decreased at ratio 5:1 and 10:1 indicating that excess of protein impact on compacted the network structures. Addition of salt in the Ova/XG and Lyso/XG mixtures suppressed the electrostatic interaction between proteins and XG shifting to lowering pHs the critical pH transitions points. The rheological data associated with microscopy images showed that interconnected gel-like network structure with heterogeneous structure were formed for both complex, and it is suggested that complexes represent a great potential to improve sensorial properties of food products. Formation of Lysozyme-Xanthan Gum (Lyso-XG) gels were studied with the objective to identify the role of individual biopolymer as well as the influence of their mixing ratio on gelation mechanism, texture properties, pores, and syneresis. The excess of protein affected the compaction of gel, which resulted in gels with dense clusters, with poorer water-bolding capacity. The gel strength mainly depended on the XG content, hence, at the ratio 1:2 hardness and held-water increased and final G' was almost five times stronger than ratio 1:1. Lyso-XG gels produced without heat treatment and with low water content presented a great potential for application in the food and pharmaceutical industry. Finally, the influence of protein (lysozyme and ?-lactoglobulin) on hydrogels formation with xanthan gum was studied as a function of three different solid total concentrations. In general, the critical strain enlarged as far as the solid total of the system was increased, and gels became more stronger and rigid. Comparing the value of G' and G'' between gels produced with lysozyme, and ?-Lactoglobulin, it was noted that Lyso-XG gels were stronger than BLG-XG. This experimental study elucidated fundamental aspects about texture formation of hydrogels and it is also suggested that results can be used by biomedical, pharmaceutical, and food industries to develop new functional semi-solid products with high water and low protein content.Prote?nas e polissacar?deos s?o os hidrocol?ides mais comumente utilizadas na ind?stria de alimentos, e a sua intera??o pode fornecer desenvolver produtos tais como complexos coacervados. Complexos coacervados ovoalbumina-pectina foram analisados em v?rias concentra??es de NaCl com diferentes concentra??es de prote?na/polissacar?deo atrav?s potencial-?, e por difra??o de raios-X. Altera??es nas concentra??es de prote?nas alteraram a regi?o de forma??o de complexos insol?veis (no ponto isoel?trico). Quando as concentra??es de NaCl foram aumentadas 0,1-0,4 M, a dissocia??o do complexo foi suprimida. Difra??o de raios-X do complexo coacervado ovoalbumina-pectina mostrou uma regi?o parcialmente cristalina definida 27-20? sugerindo que a estrutura do complexo ? mais organizada do que os pol?meros amorfos individuais. A complexa??o entre lisozima (Lyso) e pectina c?trica (Pec) foi estudado in situ por acidifica??o (12,0 - 1,0) usando medi??es de turva??o e potencial zeta. Os complexos foram analisados em diferentes concentra??es de NaCl, com diferentes raz?es de prote?nas: polissac?rido. Na propor??o de 1: 1 com 0,01 mol/L de NaCl a regi?o de forma??o de complexo insol?vel correspondeu uma gama de pH de 7,0 at? 2,0, o que representa um grande intervalo para aplica??o destes complexos em diferentes matrizes aliment?cias. Quando a concentra??o de NaCl foi aumentada de 0,01 mol/L a 0,2 mol/L foi poss?vel observar uma redu??o progressiva da turbidez e a da gama de forma??o do complexo. As imagens de microscopia de amostras revelaram que complexo apresenta uma apar?ncia esferoide como com a estrutura heterog?nea contendo uma ?nica fase polim?rico de n?cleo. O complexo Lyso / pectina representa um grande potencial em diversas aplica??es comerciais da biotecnologia. A complexa??o entre lisozima / ?-carragena e ovoalbumina / ?-carragena foi estudada in situ por acidifica??o (12,0 - 1,0) usando potencial zeta, turbidez e medi??es reol?gicas. Os complexos foram analisados em diferentes concentra??es de NaCl com diferentes propor??es de prote?na / polissacar?deo. ? medida que a propor??o de prote?na / polissacar?deo aumentou de 1: 1 a 10: 1, os pHs cr?ticos se deslocaram para valores de pH mais elevados para os complexos de ovoalbumina / ?-carragena, seguido pela diminui??o dos valores de G' nas propor??es 5: 1 e 10: 1. O aumento da raz?o nos complexos lisozima / ?-carragena suprimiu os pHs cr?ticos, por?m, os valores de G aumentaram com o aumento da raz?o. A adi??o de sal suprimiu a intera??o eletrost?tica entre prote?nas e ?-carragena. Os dados reol?gicos associados com as imagens de microscopia demonstram a forma??o de complexos inter-polim?ricos e n?s sugerimos que estes complexos representam um grande potencial para incrementar a textura, a estabilidade mec?nica e a consist?ncia de produtos aliment?cios. A complexa??o entre lisozima (Lyso) / goma xantana (XG) e ovoalbumina (Ova) / goma xantana foi estudada in situ por acidifica??o (12,0 - 1,0) usando potencial zeta, turbidez, (FTIR), e medidas reol?gicas. Os complexos foram analisados em diferentes concentra??es de NaCl com diferentes propor??es de prote?na / polissacar?deo. O aumento da propor??o de 2: 1 a 10: 1 nos complexos Lyso/XG suprimiu a forma??o de pH?, contudo, os valores de G' tamb?m diminu?ram na raz?o 5: 1 e 10: 1, indicando que o excesso de prote?na impactou na compacta??o de estruturas de rede. A adi??o de sal nos sistemas Ova/XG e Lyso/XG suprimiu a intera??o eletrost?tica entre prote?nas e XG. Os dados reol?gicos associados com imagens de microscopia demonstraram que uma estrutura da rede do tipo gel foi formada em ambos os complexos, e sugerimos que os complexos representam um grande potencial para melhorar as propriedades sensoriais dos produtos aliment?cios. G?is de lyso/XG foram estudados com o objetivo de identificar o papel dos biopol?meros na forma??o, bem como a influ?ncia da sua propor??o sobre o mecanismo de gelifica??o, das propriedades de textura, no di?metro dos poros e na sin?rese dos g?is. O excesso de prote?na afetou a compacta??o do gel, o que resultou em geleis com zonas de jun??o densas e baixa capacidade de reten??o de ?gua. A for?a do gel dependeu principalmente do teor XG, e por este motivo, na propor??o de 1:2 a dureza e a reten??o de ?gua foram mantidos elevados e o G' foi quase cinco vezes mais forte do que a raz?o de 1: 1. G?is liso-XG produzidos sem tratamento t?rmico e com baixo teor de ?gua representam um grande potencial de aplica??o para a ind?stria aliment?cia e farmac?utica. Por fim, a influ?ncia da prote?na (lisozima e ?-lactoglobulina) sobre a forma??o de hidrog?is com a goma de xantana foi estudada em fun??o de tr?s concentra??es de s?lidos totais. Em geral, a tens?o cr?tica se estendeu ? medida que a concentra??o de s?lidos totais foi aumentada. Comparando o valor de G' e G'' entre g?is produzidos com lisozima, e ?-lactoglobulina notamos que os g?is Lyso-XG s?o menos fortes do que BLG-XG. Este estudo experimental elucidou aspectos fundamentais sobre a forma??o de textura de hidrog?is e sugerimos estes resultados podem ser utilizados por pela ind?stria biom?dica, farmac?utica e de alimentos para desenvolver novos produtos semi-s?lidos funcionais com alto teor de ?gua e baixa concentra??o de prote?na.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2019-11-28T18:12:52Z No. of bitstreams: 1 2015 - Clitor Junior Fernandes de Souza.pdf: 5457532 bytes, checksum: bb3281c4661a6843051a576297df1c11 (MD5)Made available in DSpace on 2019-11-28T18:12:52Z (GMT). No. of bitstreams: 1 2015 - Clitor Junior Fernandes de Souza.pdf: 5457532 bytes, checksum: bb3281c4661a6843051a576297df1c11 (MD5) Previous issue date: 2015-10-02CAPESapplication/pdfhttps://tede.ufrrj.br/retrieve/11549/2015%20-%20Clitor%20Junior%20Fernandes%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/retrieve/16908/2015%20-%20Clitor%20Junior%20Fernandes%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/retrieve/23220/2015%20-%20Clitor%20Junior%20Fernandes%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/retrieve/29598/2015%20-%20Clitor%20Junior%20Fernandes%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/retrieve/35972/2015%20-%20Clitor%20Junior%20Fernandes%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/retrieve/42368/2015%20-%20Clitor%20Junior%20Fernandes%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/retrieve/48750/2015%20-%20Clitor%20Junior%20Fernandes%20de%20Souza.pdf.jpghttps://tede.ufrrj.br/retrieve/55200/2015%20-%20Clitor%20Junior%20Fernandes%20de%20Souza.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Ci?ncia e Tecnologia de AlimentosUFRRJBrasilInstituto de TecnologiaProte?nas da claraPectinaCarragenaGoma xantanaComplexo coacervadoEgg whitepectincarrageenanxanthan gumcomplex coacervateCi?ncia e Tecnologia de AlimentosForma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deosFormation of complex coacervates from egg white proteins and polysaccharidesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2015 - Clitor Junior Fernandes de Souza.pdf.jpg2015 - Clitor Junior Fernandes de Souza.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/3122/18/2015+-+Clitor+Junior+Fernandes+de+Souza.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD518TEXT2015 - Clitor Junior Fernandes de Souza.pdf.txt2015 - Clitor Junior Fernandes de Souza.pdf.txttext/plain398451http://localhost:8080/tede/bitstream/jspui/3122/17/2015+-+Clitor+Junior+Fernandes+de+Souza.pdf.txt905dafd6d75019712cffb0805c6ba4f3MD517ORIGINAL2015 - Clitor Junior Fernandes de Souza.pdf2015 - Clitor Junior Fernandes de Souza.pdfapplication/pdf5457532http://localhost:8080/tede/bitstream/jspui/3122/2/2015+-+Clitor+Junior+Fernandes+de+Souza.pdfbb3281c4661a6843051a576297df1c11MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/3122/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/31222021-11-01 22:15:56.93oai:localhost:jspui/3122Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2021-11-02T00:15:56Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos
dc.title.alternative.eng.fl_str_mv Formation of complex coacervates from egg white proteins and polysaccharides
title Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos
spellingShingle Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos
Souza, Clitor Junior Fernandes de
Prote?nas da clara
Pectina
Carragena
Goma xantana
Complexo coacervado
Egg white
pectin
carrageenan
xanthan gum
complex coacervate
Ci?ncia e Tecnologia de Alimentos
title_short Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos
title_full Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos
title_fullStr Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos
title_full_unstemmed Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos
title_sort Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos
author Souza, Clitor Junior Fernandes de
author_facet Souza, Clitor Junior Fernandes de
author_role author
dc.contributor.advisor1.fl_str_mv Rojas, Edwin Elard Garcia
dc.contributor.advisor1ID.fl_str_mv 014.548.996-54
dc.contributor.referee1.fl_str_mv Rojas, Edwin Elard Garcia
dc.contributor.referee2.fl_str_mv Costa, Bernardo de S?
dc.contributor.referee3.fl_str_mv Sabino, Silvio Jos?
dc.contributor.referee4.fl_str_mv Carvalho, Carlos Wanderlei Piler
dc.contributor.referee5.fl_str_mv Barbosa Junior, Jos? Lucena
dc.contributor.authorID.fl_str_mv 102.860.027-52
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7052381884244677
dc.contributor.author.fl_str_mv Souza, Clitor Junior Fernandes de
contributor_str_mv Rojas, Edwin Elard Garcia
Rojas, Edwin Elard Garcia
Costa, Bernardo de S?
Sabino, Silvio Jos?
Carvalho, Carlos Wanderlei Piler
Barbosa Junior, Jos? Lucena
dc.subject.por.fl_str_mv Prote?nas da clara
Pectina
Carragena
Goma xantana
Complexo coacervado
topic Prote?nas da clara
Pectina
Carragena
Goma xantana
Complexo coacervado
Egg white
pectin
carrageenan
xanthan gum
complex coacervate
Ci?ncia e Tecnologia de Alimentos
dc.subject.eng.fl_str_mv Egg white
pectin
carrageenan
xanthan gum
complex coacervate
dc.subject.cnpq.fl_str_mv Ci?ncia e Tecnologia de Alimentos
description Proteins and polysaccharides are the most frequently used hydrocolloids in the food industry, and their interaction can provide products such as complexes coacervates. Ovalbumin-pectin coacervate complexes was analyzed in various NaCl concentrations with different protein:polysaccharide ratios by measuring zeta (?)-potentials, and by X-ray diffraction. Changes in protein concentrations led to shifts in the region of insoluble complex formation (at the isoelectric point). When NaCl concentrations increased from 0.1 to 0.4 M, complex dissociation were suppressed. X-ray diffraction of the ovalbumin-pectin coacervate complex showed a partially defined crystalline region from 27-20? suggesting that the structure of the complex is more organized than the individual amorphous polymers. The complexation between lysozyme (Lyso) and citrus pectin (Pec) were studied in situ by acidification (12.0-1.0) using zeta potential and turbidity measurements. The complexes were analyzed in different NaCl concentrations with different protein:polysaccharide ratios. In the ratio 1:1 with 0.01 mol/L of NaCl the region of the formation of insoluble complex corresponded a pH range 7.0 to 2.0 which represent a wide range to apply this complex on different matrix food. When NaCl concentration was increased from 0.01 mol/L to 0.2 mol/L was possible to see a progressive reduction of turbidity and the pH range of complex formation achieving in a total suppression of complex in 0.4 mol/L. The microscopy images of samples revealed that complexes presented spheroid like appearance with the heterogeneous structure containing a single core polymeric phase. The Lyso/Pectin complex particles described here may represents a great potential in various commercial applications in the biotechnological The complexation between lysozyme/?-carrageenan and ovalbumin/?-carrageenan was studied in situ by acidification (12.0-1.0) using zeta potential, turbidity and rheological measurements. The complexes were analyzed in different NaCl concentrations with different protein/polysaccharide ratios. As the protein:polysaccharide ratio increased from 1:1 to 10:1, critical pHs shifted to higher pHs with ovalbumin/?-carrageenan complexes followed by a decrease of G? values of the ratios 5:1 and 10:1. The increase of ratio with lysozyme/?-carrageenan complexes suppressed the critical pH transitions points forming large insoluble complexes from pH 12.0 to 1.0 and the values of G? increased simultaneously reaching the higher value of the ratio 10:1. Addition of salt to the ovalbumin/?-carrageenan and lysozyme/?-carrageenan mixtures suppressed the electrostatic interaction between proteins and ?-carrageenan. The rheological data associated with microscopy images showed that intrapolymer complexes with heterogeneous structure were formed for both complex, and we suggest that complexes represent a great potential to improving texture, mechanical stability, consistency, and taste of food products. The complexation between lysozyme (Lyso)/xanthan gum (XG) and ovalbumin (Ova)/xanthan gum was studied in situ by acidification (12.0-1.0) using zeta potential, turbidity, Fourier transform infrared spectroscopy (FTIR), and rheological measurements. The complexes were analyzed in different NaCl concentrations with different protein/polysaccharide ratios. The increase of the ratio from 2:1 to 10:1 for Lyso/XG complexes suppressed the pH? forming insoluble at pH 12.0, however, the values of G? decreased at ratio 5:1 and 10:1 indicating that excess of protein impact on compacted the network structures. Addition of salt in the Ova/XG and Lyso/XG mixtures suppressed the electrostatic interaction between proteins and XG shifting to lowering pHs the critical pH transitions points. The rheological data associated with microscopy images showed that interconnected gel-like network structure with heterogeneous structure were formed for both complex, and it is suggested that complexes represent a great potential to improve sensorial properties of food products. Formation of Lysozyme-Xanthan Gum (Lyso-XG) gels were studied with the objective to identify the role of individual biopolymer as well as the influence of their mixing ratio on gelation mechanism, texture properties, pores, and syneresis. The excess of protein affected the compaction of gel, which resulted in gels with dense clusters, with poorer water-bolding capacity. The gel strength mainly depended on the XG content, hence, at the ratio 1:2 hardness and held-water increased and final G' was almost five times stronger than ratio 1:1. Lyso-XG gels produced without heat treatment and with low water content presented a great potential for application in the food and pharmaceutical industry. Finally, the influence of protein (lysozyme and ?-lactoglobulin) on hydrogels formation with xanthan gum was studied as a function of three different solid total concentrations. In general, the critical strain enlarged as far as the solid total of the system was increased, and gels became more stronger and rigid. Comparing the value of G' and G'' between gels produced with lysozyme, and ?-Lactoglobulin, it was noted that Lyso-XG gels were stronger than BLG-XG. This experimental study elucidated fundamental aspects about texture formation of hydrogels and it is also suggested that results can be used by biomedical, pharmaceutical, and food industries to develop new functional semi-solid products with high water and low protein content.
publishDate 2015
dc.date.issued.fl_str_mv 2015-10-02
dc.date.accessioned.fl_str_mv 2019-11-28T18:12:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, Clitor Junior Fernandes de. Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos. 2015. 161 f. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2015.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/3122
identifier_str_mv SOUZA, Clitor Junior Fernandes de. Forma??o de complexos coacervados a partir das prote?nas da clara de ovo e polissacar?deos. 2015. 161 f. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2015.
url https://tede.ufrrj.br/jspui/handle/jspui/3122
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/3122/18/2015+-+Clitor+Junior+Fernandes+de+Souza.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/3122/17/2015+-+Clitor+Junior+Fernandes+de+Souza.pdf.txt
http://localhost:8080/tede/bitstream/jspui/3122/2/2015+-+Clitor+Junior+Fernandes+de+Souza.pdf
http://localhost:8080/tede/bitstream/jspui/3122/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
905dafd6d75019712cffb0805c6ba4f3
bb3281c4661a6843051a576297df1c11
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220302301691904