M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Alves, Charlan Dellon da Silva lattes
Orientador(a): Greg?rio, Ronaldo Malheiros lattes
Banca de defesa: Farias, Ricardo, Cavalcante, Jos? Airton Chaves
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Modelagem Matem?tica e Computacional
Departamento: Instituto de Ci?ncias Exatas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/3045
Resumo: This paper aims to apply the proximal point method with Schur decomposition to the computation of the Riemannian average as image filter in diffusion tensor magnetic resonance imaging (DT-MRI). In DT-MRI, the image is subdivided into volumetric units called voxels. Analytically, each voxel is the three-dimensional representation of mathematical information relating to a symmetric positive definite matrix of order 3. Geometrically, the voxel takes the form of an ellipsoid whose axes are given by the eigenvectors of the matrix corresponding to it, and the repective lengths of the axes, the eigenvalues. One of the main stages of the processing images in DT-MRI is filtering. At this stage, smoothing techniques and cleaning noises coming from the apparatus used for acquisition are commonly employed. First, in our study, the tensors are generated from a given sequence of real images captured by an resonance magnetic machine, subsequently, a function plotting tensor data from Matlab is used to display the image of the tensor field. In the next step, we implemented the filter of Riemannian average in Matlab that was applied in each image generated previously with the objective of soften it. To accomplish this task is necessary solving an optimization problem for each voxel traversed, defined by information about their neighbors tensor. In geral, noise are characterized by voxels whose representations matrices contain negatives eigenvalues e their geometric representations are given by ellipsoids whose orientation is contrary to the observed anisotropic diffusion region. To filter out noise, usually is replaced defective voxel by an average calculated from its nearest neighbors. In this research we propose a methodology of proximal point in Hadamard manifold as a tool for determining the Riemannian average. From the theoretical point of view, this methodology is which has of most sophisticated in optimization suffering only performance analysis when applied to real situations
id UFRRJ-1_bf1251b84ccb79e67ec951483c7ab815
oai_identifier_str oai:localhost:jspui/3045
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Greg?rio, Ronaldo Malheiros07711716761http://lattes.cnpq.br/4502104424266743Delgado, Angel Ramon Sanchez05259885724http://lattes.cnpq.br/2933812315339699Farias, RicardoCavalcante, Jos? Airton Chaves08303473646http://lattes.cnpq.br/7189958196869343Alves, Charlan Dellon da Silva2019-11-05T19:29:48Z2014-04-08Alves, Charlan Dellon da Silva. M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM. 2014. [49 f.]. Disserta??o( Programa de P?s-Gradua??o em Modelagem Matem?tica e Computacional) - Universidade Federal Rural do Rio de Janeiro, [Serop?dica-RJ] .https://tede.ufrrj.br/jspui/handle/jspui/3045This paper aims to apply the proximal point method with Schur decomposition to the computation of the Riemannian average as image filter in diffusion tensor magnetic resonance imaging (DT-MRI). In DT-MRI, the image is subdivided into volumetric units called voxels. Analytically, each voxel is the three-dimensional representation of mathematical information relating to a symmetric positive definite matrix of order 3. Geometrically, the voxel takes the form of an ellipsoid whose axes are given by the eigenvectors of the matrix corresponding to it, and the repective lengths of the axes, the eigenvalues. One of the main stages of the processing images in DT-MRI is filtering. At this stage, smoothing techniques and cleaning noises coming from the apparatus used for acquisition are commonly employed. First, in our study, the tensors are generated from a given sequence of real images captured by an resonance magnetic machine, subsequently, a function plotting tensor data from Matlab is used to display the image of the tensor field. In the next step, we implemented the filter of Riemannian average in Matlab that was applied in each image generated previously with the objective of soften it. To accomplish this task is necessary solving an optimization problem for each voxel traversed, defined by information about their neighbors tensor. In geral, noise are characterized by voxels whose representations matrices contain negatives eigenvalues e their geometric representations are given by ellipsoids whose orientation is contrary to the observed anisotropic diffusion region. To filter out noise, usually is replaced defective voxel by an average calculated from its nearest neighbors. In this research we propose a methodology of proximal point in Hadamard manifold as a tool for determining the Riemannian average. From the theoretical point of view, this methodology is which has of most sophisticated in optimization suffering only performance analysis when applied to real situationsEste trabalho tem como objetivo principal aplicar o m?todo de ponto proximal com decomposi??o de Schur ao c?mputo da m?dia riemanniana, como filtro de imagem em difus?o tensorial de imagem por resson?ncia magn?tica (DTI-RM). Em DTI-RM, a imagem ? subdividida em unidades volum?tricas denominadas voxels. Analiticamente, cada voxel ? a representa??o tridimensional de informa??es matem?ticas referentes a uma matriz sim?trica definida positiva, de ordem 3. Geometricamente, o voxel assume a forma de um elips?ide, cujos os eixos s?o dados pelos autovetores da matriz correspondente a ele, e os respectivos comprimentos dos eixos, pelos autovalores associados. Uma das principais etapas do processamento de imagens em DTI-RM ? a filtragem. Nessa etapa, t?cnicas de suaviza??o e limpeza de ru?dos oriundos do aparelho utilizado para aquisi??o s?o comumente empregadas. Primeiramente, em nosso trabalho, os tensores s?o gerados a partir de uma sequ?ncia de imagens reais captadas por um aparelho de resson?ncia magn?tica, posteriormente, a fun??o de plotagem de dados tensoriais do Matlab ? empregada para visualizar a imagem do campo tensorial. Na etapa seguinte, implementamos o filtro de m?dia riemanniana em Matlab que foi aplicado em cada imagem gerada anteriormente com o intuito de suaviz?-las. Para realizar esta tarefa ? necess?rio a resolu??o de um problema de otimiza??o para cada voxel percorrido, definido atrav?s de informa??es acerca de seus tensores vizinhos. Em geral, ru?dos s?o caracterizados por voxels cujas matrizes de representa??o cont?m autovalores negativos e suas representa??es geom?tricas s?o dadas por elips?ides cuja orienta??o contraria a da difus?o anisotr?pica para regi?o observada. Para filtrar ru?dos, geralmente substitu?-se o voxel deficiente por uma m?dia calculada a partir de seus vizinhos mais pr?ximos. Nessa pesquisa propomos a metodologia de ponto proximal em variedades de Hadamard como ferramenta para determina??o da m?dia riemanniana. Do ponto de vista te?rico, tal metodologia representa o que se tem de mais sofisticado em otimiza??o padecendo apenas de an?lise de desempenho quando aplicado a situa??es reais.Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-11-05T19:29:48Z No. of bitstreams: 1 2014 - Charlan Dellon da Silva Alves.pdf: 8347928 bytes, checksum: f1f747956e87e7d52041817e714fc33c (MD5)Made available in DSpace on 2019-11-05T19:29:48Z (GMT). No. of bitstreams: 1 2014 - Charlan Dellon da Silva Alves.pdf: 8347928 bytes, checksum: f1f747956e87e7d52041817e714fc33c (MD5) Previous issue date: 2014-04-08Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPESapplication/pdfhttps://tede.ufrrj.br/retrieve/11236/2014%20-%20Charlan%20Dellon%20da%20Silva%20Alves.pdf.jpghttps://tede.ufrrj.br/retrieve/16866/2014%20-%20Charlan%20Dellon%20da%20Silva%20Alves.pdf.jpghttps://tede.ufrrj.br/retrieve/23180/2014%20-%20Charlan%20Dellon%20da%20Silva%20Alves.pdf.jpghttps://tede.ufrrj.br/retrieve/29556/2014%20-%20Charlan%20Dellon%20da%20Silva%20Alves.pdf.jpghttps://tede.ufrrj.br/retrieve/35930/2014%20-%20Charlan%20Dellon%20da%20Silva%20Alves.pdf.jpghttps://tede.ufrrj.br/retrieve/42326/2014%20-%20Charlan%20Dellon%20da%20Silva%20Alves.pdf.jpghttps://tede.ufrrj.br/retrieve/48708/2014%20-%20Charlan%20Dellon%20da%20Silva%20Alves.pdf.jpghttps://tede.ufrrj.br/retrieve/55158/2014%20-%20Charlan%20Dellon%20da%20Silva%20Alves.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Modelagem Matem?tica e ComputacionalUFRRJBrasilInstituto de Ci?ncias ExatasASSAF, B. A. et al. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. AJNR Am J Neuroradiol, v. 24(9): p. 1857-1862, 2003. Citado na p?gina 12. ASTOLA, J.; HAAVISTO, P. Neuvo, vector median filters. Proceedings of the IEEE, v. 78 (4), pp. 678?689, 1990. Citado na p?gina 33. BARMPOUTIS, A. FDT FanDtasia. http://www.cise.ufl.edu/: [s.n.], 2013. Citado na p?gina 36. BASSER, P. J. et al. Estimation of the effective self-diffusion tensor from the nmr spin echo. Journal of Magnetic Resonance B 103., J, 247?254, 1994. Citado na p?gina 28. BASSER, P. J.; PAJEVIC, S. A normal distribution for tensor valued random variables: applications to diffusion tensor mri. IEEE Trans. Med. Imaging 22., (7) 785?794, 2003. Citado 5 vezes nas p?ginas 29, 31, 32, 33 e 39. BEAULIEU, C. The basis of anisotropic water diffusion in the nervous system a technical review. NMR Biomed., Nov-Dec; 15(7-8): 435-55. Review, 2005. Citado na p?gina 28. BINI, D. A.; IANNANZO, B. Computing the karcher mean of symmetric positive definite matrices, linear algebra and its applications. v. 438, 1700-1710, 2013. Citado na p?gina 33. BOLDRINI, J. L. et al. ?lgebra Linear. Harbra LTDA, 3a edi??o, S?o Paulo,: [s.n.], 1980. Citado na p?gina 30. CARMO, M. P. D. Riemannian geometry. Mathematics: Theory e Applications. Birkh?user Boston Inc.: Boston, MA, Translated from the second Portuguese edition by Francis Flaherty.: [s.n.], 1992. Citado 2 vezes nas p?ginas 14 e 16. ERIKSSON, S. H. et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain, 124(3): p. 617-626, v. 24(9): p. 1857-1862, 2001. Citado na p?gina 12. FALEIROS, A. C. Curso de ?lgebra Linear Aplicada. <http://posmat.ufabc.edu.br/attachments/043_notasdeaulaalgebralineara plicadafaleiros.pdf>, ?s 11:00 hs: [s.n.], 2013. Citado na p?gina 20. FERREIRA, O. P.; OLIVEIRA, P. R. Proximal point algorithm on riemannian manifolds. Optimizacion., v. 51, n. 2, pp. 257-270, 2002. Citado 2 vezes nas p?ginas 23 e 24. FILHO, O. M.; NETO, H. V. Processamento digital de Imagens. Rio de Janeiro: Brasport. S?rie Acad?mica.: [s.n.], 1999. Citado na p?gina 33. FLETCHER, P. T.; JOSHI, S. Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In Proceedings of Workshop on Computer Vision Approaches to Medical Image Analysis (CVAMIA), 2004. Citado na p?gina 33. Refer?ncias 47 GREGORIO, R.; OLIVEIRA, P. R. Proximal point algorithm with schur decomposition on the cone of symmetric semidefinite positive matrices. J. Math. Anal. Appl., v. 355, n. 2, 469-479, 2009. Citado 6 vezes nas p?ginas 13, 17, 23, 24, 25 e 33. GREG?RIO, R. Algoritmo de ponto proximal no cone das matrizes sim?tricas semidefinidas positivas e um m?todo de escalariza??o log-quadr?tico para programa??o multiobjetivo. UFRJ/ COOPE/ Programas de Engenharia de Sistemas e Computa??o.: [s.n.], 2008. Citado 2 vezes nas p?ginas 17 e 18. HIRIART-URRUTY, J. B.; LEMAR?CHAL, C. Convex analysis and minimization algorithms. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag: Berlin, Fundamentals., v. 305, 1993. Citado na p?gina 16. HORN, R.; JOHNSON, C. Matrix analysis. Sci. Tech. Perspect. 23, v. 1 ed. Cambridge, Cambridge University Press, 1985. Citado 3 vezes nas p?ginas 17, 18 e 23. IMAGING, C. para o C. A. dti30.zip. 2013. Dispon?vel em: <http://www.cabiatl.com/Resources/DTI/dti30.zip>. Acesso em: 20 mar. 2013. Citado 2 vezes nas p?ginas 27 e 36. IZMAILOV, A.; SOLODOV, M. Otimiza??o: Condi??es de otimalidade, elementos de an?lise convexa e de dualidade. IMPA: Rio de Janeiro, RJ., v. 1, 2005. Citado na p?gina 16. MAZZOLA, A. A. Resson?ncia magn?tica: princ?pios de forma??o da imagem e aplica??es em imagem funcional. Revista Brasileira de F?sica M?dica, vol. 3(1), pp. 117?129, 2009. Citado na p?gina 26. MCROBBIE, D. W. et al. Mri from picture to proton. Cambridge University Press, 2007. Citado na p?gina 26. MITTIMANN, A. Tractografia em tempo real atrav?s de unidades de processamento gr?fico. Florian?polis, SC, 2009. Citado na p?gina 26. MOAKHER, M. A history of greek mathematics. From Thales to Euclid, Dover, New York, Vol. 1, 1981. Citado na p?gina 21. MOAKHER, M. Means and averaging in the group of rotations. SIAM J. Matrix Anal., Appl. 24, PP. 1-16, 2002. Citado na p?gina 22. MOAKHER, M. A differential geometry approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal., Appl. 26, pp. 735?747, 2005. Citado 4 vezes nas p?ginas 19, 23, 24 e 33. MORI, S. Introduction to diffusion tensor imaging. Elsevier., 2007. Citado na p?gina 26. MORI, S.; BARKER, P. B. Diffusion magnetic resonance imaging: Its principles and applications. The Anatomical Record 257, v. 102-109, 1999. Citado na p?gina 26. MORI, S.; ZHANG, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. 51(5):527-39. Review.: [s.n.], 2006. Citado 2 vezes nas p?ginas 26 e 28. Refer?ncias 48 MOSHEYE, L.; ZIBULEVSK, M. Penalty/barrier multiplier algorithm for semidefinite programming. Optimization Methods and Softwares., v.13, n.4, p.235-261, 2000. Citado na p?gina 18. NESTEROV, Y. E.; TODD, M. J. On the riemannian geometry defined by self-concordant barriers and interior-point methods. Foundations of Computational Mathematics, v.2, n.4, p. 333-361, 2002. Citado 2 vezes nas p?ginas 18 e 19. PENNEC, X. et al. A riemannian framework for tensor computing. EPIDAURE / ASCLEPIOS Project-team, INRIA Sophia-Antipolis 2004 Route des Lucioles BP 93, F-06902 Sophia Antipolis Cedex, FRANCE, v. 149, 2005. Citado 4 vezes nas p?ginas 12, 20, 33 e 34. PEREIRA, A. S. B. M. Imagem de Tensor de Difus?o em Alzheimer. Faculdade de ci?ncias e tecnologia, Lisboa.: [s.n.], 2008. Citado 2 vezes nas p?ginas 9 e 29. PULINO, P. ?lgebra Linear e suas Alica??es: Notas de Aula. 2013. Dispon?vel em: <http://www.ime.unicamp.br/\simpulino/ALESA/>. Acesso em: 23 mar. 2013. Citado na p?gina 30. ROTHAUS, O. S. Domains of positivity. Abh. Math. Sem. Univ., v.24, n.3, p. 189-235, 1960. Citado 2 vezes nas p?ginas 18 e 19. SAKAI, T. Riemannian geometry. In: translations of mathematical monographs, American Mathematical Society, Providence, R.I., v. 149, 1996. Citado 2 vezes nas p?ginas 14 e 16. SPIESSER, M. Les m?di?t?s dans la pens?e grecque, in musique et math?matiques. Sci. Tech. Perspect. 23, Universit? de Nantes, Nantes, France, pp. 1?71, 1993. Citado na p?gina 21. STEJSKAL, E. O.; TANNER, J. E. Pin diffusion measurements: spin references echoes in the presence of a time-dependent field gradient. NMR Biomed., S J. Chem. Phys. 42, 288?292, 1965. Citado 2 vezes nas p?ginas 28 e 30. SYMMS, M. R. et al. A review of structural magnetic resonance neuroimaging. Journal Neurol Neurosurg Psychiatry, v. 75(9): p. 1235-1244, 2004. Citado na p?gina 12. TRAHANIAS, P.; VENETSANOPOULOS, A. Vector directional filters ? a new class of multichannel image processing filters. IEEE Transactions on Image Processing, v. 2 (4), pp. 528?534, 1993. Citado na p?gina 34. WELK, M. et al. Medianand related local filters for tensor-value dimages. Signal Processing, v. 87, 291?308, 2007. Citado na p?gina 33. WESTIN, C. F. et al. Processing and visualization for diffusion tensor MRI. Brigham E Women?s Hospital, Harvard Medical School, Department of Radiology, 75 Francis Street, Boston, MA 02115, USA: [s.n.], 2002. Citado 3 vezes nas p?ginas 12, 30 e 32. ZHANG, F.; EDWIN, R. New Riemannian techniques for directional and tensorial image data. Department of Computer Science, University of York,York YO10 5DD, UK. Elsevier Ltd. All rights reserved: [s.n.], 2009. Citado 4 vezes nas p?ginas 12, 13, 33 e 34. Refer?ncias 49 ZHANG, F.; HANCOCK, E. R. A riemannian weighted filter for edge-sensitive image smoothing. in:Proceedings of International Conference on Pattern Recognition, p. 594 ? 598, 2006. Citado 2 vezes nas p?ginas 12 e 34.filtro de m?dia riemannianadifus?o tensorial de imagensm?todo de ponto proximalRiemannian average filterdiffusion tensor imagesmethod of proximal pointMatem?ticaM?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RMProximal point method for computation of average filter in Riemannian DT-MRIinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2014 - Charlan Dellon da Silva Alves.pdf.jpg2014 - Charlan Dellon da Silva Alves.pdf.jpgimage/jpeg4055http://localhost:8080/tede/bitstream/jspui/3045/18/2014+-+Charlan+Dellon+da+Silva+Alves.pdf.jpg9ab9b1cc9d4d0d5f1db5192ae5874f88MD518TEXT2014 - Charlan Dellon da Silva Alves.pdf.txt2014 - Charlan Dellon da Silva Alves.pdf.txttext/plain76392http://localhost:8080/tede/bitstream/jspui/3045/17/2014+-+Charlan+Dellon+da+Silva+Alves.pdf.txt19f76cb1659ca9980c53a4339912f193MD517ORIGINAL2014 - Charlan Dellon da Silva Alves.pdf2014 - Charlan Dellon da Silva Alves.pdfapplication/pdf8347928http://localhost:8080/tede/bitstream/jspui/3045/2/2014+-+Charlan+Dellon+da+Silva+Alves.pdff1f747956e87e7d52041817e714fc33cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/3045/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/30452020-05-19 02:03:10.195oai:localhost:jspui/3045Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2020-05-19T05:03:10Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM
dc.title.alternative.eng.fl_str_mv Proximal point method for computation of average filter in Riemannian DT-MRI
title M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM
spellingShingle M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM
Alves, Charlan Dellon da Silva
filtro de m?dia riemanniana
difus?o tensorial de imagens
m?todo de ponto proximal
Riemannian average filter
diffusion tensor images
method of proximal point
Matem?tica
title_short M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM
title_full M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM
title_fullStr M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM
title_full_unstemmed M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM
title_sort M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM
author Alves, Charlan Dellon da Silva
author_facet Alves, Charlan Dellon da Silva
author_role author
dc.contributor.advisor1.fl_str_mv Greg?rio, Ronaldo Malheiros
dc.contributor.advisor1ID.fl_str_mv 07711716761
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4502104424266743
dc.contributor.advisor-co1.fl_str_mv Delgado, Angel Ramon Sanchez
dc.contributor.advisor-co1ID.fl_str_mv 05259885724
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2933812315339699
dc.contributor.referee1.fl_str_mv Farias, Ricardo
dc.contributor.referee2.fl_str_mv Cavalcante, Jos? Airton Chaves
dc.contributor.authorID.fl_str_mv 08303473646
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7189958196869343
dc.contributor.author.fl_str_mv Alves, Charlan Dellon da Silva
contributor_str_mv Greg?rio, Ronaldo Malheiros
Delgado, Angel Ramon Sanchez
Farias, Ricardo
Cavalcante, Jos? Airton Chaves
dc.subject.por.fl_str_mv filtro de m?dia riemanniana
difus?o tensorial de imagens
m?todo de ponto proximal
topic filtro de m?dia riemanniana
difus?o tensorial de imagens
m?todo de ponto proximal
Riemannian average filter
diffusion tensor images
method of proximal point
Matem?tica
dc.subject.eng.fl_str_mv Riemannian average filter
diffusion tensor images
method of proximal point
dc.subject.cnpq.fl_str_mv Matem?tica
description This paper aims to apply the proximal point method with Schur decomposition to the computation of the Riemannian average as image filter in diffusion tensor magnetic resonance imaging (DT-MRI). In DT-MRI, the image is subdivided into volumetric units called voxels. Analytically, each voxel is the three-dimensional representation of mathematical information relating to a symmetric positive definite matrix of order 3. Geometrically, the voxel takes the form of an ellipsoid whose axes are given by the eigenvectors of the matrix corresponding to it, and the repective lengths of the axes, the eigenvalues. One of the main stages of the processing images in DT-MRI is filtering. At this stage, smoothing techniques and cleaning noises coming from the apparatus used for acquisition are commonly employed. First, in our study, the tensors are generated from a given sequence of real images captured by an resonance magnetic machine, subsequently, a function plotting tensor data from Matlab is used to display the image of the tensor field. In the next step, we implemented the filter of Riemannian average in Matlab that was applied in each image generated previously with the objective of soften it. To accomplish this task is necessary solving an optimization problem for each voxel traversed, defined by information about their neighbors tensor. In geral, noise are characterized by voxels whose representations matrices contain negatives eigenvalues e their geometric representations are given by ellipsoids whose orientation is contrary to the observed anisotropic diffusion region. To filter out noise, usually is replaced defective voxel by an average calculated from its nearest neighbors. In this research we propose a methodology of proximal point in Hadamard manifold as a tool for determining the Riemannian average. From the theoretical point of view, this methodology is which has of most sophisticated in optimization suffering only performance analysis when applied to real situations
publishDate 2014
dc.date.issued.fl_str_mv 2014-04-08
dc.date.accessioned.fl_str_mv 2019-11-05T19:29:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Alves, Charlan Dellon da Silva. M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM. 2014. [49 f.]. Disserta??o( Programa de P?s-Gradua??o em Modelagem Matem?tica e Computacional) - Universidade Federal Rural do Rio de Janeiro, [Serop?dica-RJ] .
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/3045
identifier_str_mv Alves, Charlan Dellon da Silva. M?todo de ponto proximal para c?mputo de filtro de m?dia riemanniano em DTI-RM. 2014. [49 f.]. Disserta??o( Programa de P?s-Gradua??o em Modelagem Matem?tica e Computacional) - Universidade Federal Rural do Rio de Janeiro, [Serop?dica-RJ] .
url https://tede.ufrrj.br/jspui/handle/jspui/3045
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ASSAF, B. A. et al. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. AJNR Am J Neuroradiol, v. 24(9): p. 1857-1862, 2003. Citado na p?gina 12. ASTOLA, J.; HAAVISTO, P. Neuvo, vector median filters. Proceedings of the IEEE, v. 78 (4), pp. 678?689, 1990. Citado na p?gina 33. BARMPOUTIS, A. FDT FanDtasia. http://www.cise.ufl.edu/: [s.n.], 2013. Citado na p?gina 36. BASSER, P. J. et al. Estimation of the effective self-diffusion tensor from the nmr spin echo. Journal of Magnetic Resonance B 103., J, 247?254, 1994. Citado na p?gina 28. BASSER, P. J.; PAJEVIC, S. A normal distribution for tensor valued random variables: applications to diffusion tensor mri. IEEE Trans. Med. Imaging 22., (7) 785?794, 2003. Citado 5 vezes nas p?ginas 29, 31, 32, 33 e 39. BEAULIEU, C. The basis of anisotropic water diffusion in the nervous system a technical review. NMR Biomed., Nov-Dec; 15(7-8): 435-55. Review, 2005. Citado na p?gina 28. BINI, D. A.; IANNANZO, B. Computing the karcher mean of symmetric positive definite matrices, linear algebra and its applications. v. 438, 1700-1710, 2013. Citado na p?gina 33. BOLDRINI, J. L. et al. ?lgebra Linear. Harbra LTDA, 3a edi??o, S?o Paulo,: [s.n.], 1980. Citado na p?gina 30. CARMO, M. P. D. Riemannian geometry. Mathematics: Theory e Applications. Birkh?user Boston Inc.: Boston, MA, Translated from the second Portuguese edition by Francis Flaherty.: [s.n.], 1992. Citado 2 vezes nas p?ginas 14 e 16. ERIKSSON, S. H. et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain, 124(3): p. 617-626, v. 24(9): p. 1857-1862, 2001. Citado na p?gina 12. FALEIROS, A. C. Curso de ?lgebra Linear Aplicada. <http://posmat.ufabc.edu.br/attachments/043_notasdeaulaalgebralineara plicadafaleiros.pdf>, ?s 11:00 hs: [s.n.], 2013. Citado na p?gina 20. FERREIRA, O. P.; OLIVEIRA, P. R. Proximal point algorithm on riemannian manifolds. Optimizacion., v. 51, n. 2, pp. 257-270, 2002. Citado 2 vezes nas p?ginas 23 e 24. FILHO, O. M.; NETO, H. V. Processamento digital de Imagens. Rio de Janeiro: Brasport. S?rie Acad?mica.: [s.n.], 1999. Citado na p?gina 33. FLETCHER, P. T.; JOSHI, S. Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In Proceedings of Workshop on Computer Vision Approaches to Medical Image Analysis (CVAMIA), 2004. Citado na p?gina 33. Refer?ncias 47 GREGORIO, R.; OLIVEIRA, P. R. Proximal point algorithm with schur decomposition on the cone of symmetric semidefinite positive matrices. J. Math. Anal. Appl., v. 355, n. 2, 469-479, 2009. Citado 6 vezes nas p?ginas 13, 17, 23, 24, 25 e 33. GREG?RIO, R. Algoritmo de ponto proximal no cone das matrizes sim?tricas semidefinidas positivas e um m?todo de escalariza??o log-quadr?tico para programa??o multiobjetivo. UFRJ/ COOPE/ Programas de Engenharia de Sistemas e Computa??o.: [s.n.], 2008. Citado 2 vezes nas p?ginas 17 e 18. HIRIART-URRUTY, J. B.; LEMAR?CHAL, C. Convex analysis and minimization algorithms. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag: Berlin, Fundamentals., v. 305, 1993. Citado na p?gina 16. HORN, R.; JOHNSON, C. Matrix analysis. Sci. Tech. Perspect. 23, v. 1 ed. Cambridge, Cambridge University Press, 1985. Citado 3 vezes nas p?ginas 17, 18 e 23. IMAGING, C. para o C. A. dti30.zip. 2013. Dispon?vel em: <http://www.cabiatl.com/Resources/DTI/dti30.zip>. Acesso em: 20 mar. 2013. Citado 2 vezes nas p?ginas 27 e 36. IZMAILOV, A.; SOLODOV, M. Otimiza??o: Condi??es de otimalidade, elementos de an?lise convexa e de dualidade. IMPA: Rio de Janeiro, RJ., v. 1, 2005. Citado na p?gina 16. MAZZOLA, A. A. Resson?ncia magn?tica: princ?pios de forma??o da imagem e aplica??es em imagem funcional. Revista Brasileira de F?sica M?dica, vol. 3(1), pp. 117?129, 2009. Citado na p?gina 26. MCROBBIE, D. W. et al. Mri from picture to proton. Cambridge University Press, 2007. Citado na p?gina 26. MITTIMANN, A. Tractografia em tempo real atrav?s de unidades de processamento gr?fico. Florian?polis, SC, 2009. Citado na p?gina 26. MOAKHER, M. A history of greek mathematics. From Thales to Euclid, Dover, New York, Vol. 1, 1981. Citado na p?gina 21. MOAKHER, M. Means and averaging in the group of rotations. SIAM J. Matrix Anal., Appl. 24, PP. 1-16, 2002. Citado na p?gina 22. MOAKHER, M. A differential geometry approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal., Appl. 26, pp. 735?747, 2005. Citado 4 vezes nas p?ginas 19, 23, 24 e 33. MORI, S. Introduction to diffusion tensor imaging. Elsevier., 2007. Citado na p?gina 26. MORI, S.; BARKER, P. B. Diffusion magnetic resonance imaging: Its principles and applications. The Anatomical Record 257, v. 102-109, 1999. Citado na p?gina 26. MORI, S.; ZHANG, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. 51(5):527-39. Review.: [s.n.], 2006. Citado 2 vezes nas p?ginas 26 e 28. Refer?ncias 48 MOSHEYE, L.; ZIBULEVSK, M. Penalty/barrier multiplier algorithm for semidefinite programming. Optimization Methods and Softwares., v.13, n.4, p.235-261, 2000. Citado na p?gina 18. NESTEROV, Y. E.; TODD, M. J. On the riemannian geometry defined by self-concordant barriers and interior-point methods. Foundations of Computational Mathematics, v.2, n.4, p. 333-361, 2002. Citado 2 vezes nas p?ginas 18 e 19. PENNEC, X. et al. A riemannian framework for tensor computing. EPIDAURE / ASCLEPIOS Project-team, INRIA Sophia-Antipolis 2004 Route des Lucioles BP 93, F-06902 Sophia Antipolis Cedex, FRANCE, v. 149, 2005. Citado 4 vezes nas p?ginas 12, 20, 33 e 34. PEREIRA, A. S. B. M. Imagem de Tensor de Difus?o em Alzheimer. Faculdade de ci?ncias e tecnologia, Lisboa.: [s.n.], 2008. Citado 2 vezes nas p?ginas 9 e 29. PULINO, P. ?lgebra Linear e suas Alica??es: Notas de Aula. 2013. Dispon?vel em: <http://www.ime.unicamp.br/\simpulino/ALESA/>. Acesso em: 23 mar. 2013. Citado na p?gina 30. ROTHAUS, O. S. Domains of positivity. Abh. Math. Sem. Univ., v.24, n.3, p. 189-235, 1960. Citado 2 vezes nas p?ginas 18 e 19. SAKAI, T. Riemannian geometry. In: translations of mathematical monographs, American Mathematical Society, Providence, R.I., v. 149, 1996. Citado 2 vezes nas p?ginas 14 e 16. SPIESSER, M. Les m?di?t?s dans la pens?e grecque, in musique et math?matiques. Sci. Tech. Perspect. 23, Universit? de Nantes, Nantes, France, pp. 1?71, 1993. Citado na p?gina 21. STEJSKAL, E. O.; TANNER, J. E. Pin diffusion measurements: spin references echoes in the presence of a time-dependent field gradient. NMR Biomed., S J. Chem. Phys. 42, 288?292, 1965. Citado 2 vezes nas p?ginas 28 e 30. SYMMS, M. R. et al. A review of structural magnetic resonance neuroimaging. Journal Neurol Neurosurg Psychiatry, v. 75(9): p. 1235-1244, 2004. Citado na p?gina 12. TRAHANIAS, P.; VENETSANOPOULOS, A. Vector directional filters ? a new class of multichannel image processing filters. IEEE Transactions on Image Processing, v. 2 (4), pp. 528?534, 1993. Citado na p?gina 34. WELK, M. et al. Medianand related local filters for tensor-value dimages. Signal Processing, v. 87, 291?308, 2007. Citado na p?gina 33. WESTIN, C. F. et al. Processing and visualization for diffusion tensor MRI. Brigham E Women?s Hospital, Harvard Medical School, Department of Radiology, 75 Francis Street, Boston, MA 02115, USA: [s.n.], 2002. Citado 3 vezes nas p?ginas 12, 30 e 32. ZHANG, F.; EDWIN, R. New Riemannian techniques for directional and tensorial image data. Department of Computer Science, University of York,York YO10 5DD, UK. Elsevier Ltd. All rights reserved: [s.n.], 2009. Citado 4 vezes nas p?ginas 12, 13, 33 e 34. Refer?ncias 49 ZHANG, F.; HANCOCK, E. R. A riemannian weighted filter for edge-sensitive image smoothing. in:Proceedings of International Conference on Pattern Recognition, p. 594 ? 598, 2006. Citado 2 vezes nas p?ginas 12 e 34.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Modelagem Matem?tica e Computacional
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ci?ncias Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/3045/18/2014+-+Charlan+Dellon+da+Silva+Alves.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/3045/17/2014+-+Charlan+Dellon+da+Silva+Alves.pdf.txt
http://localhost:8080/tede/bitstream/jspui/3045/2/2014+-+Charlan+Dellon+da+Silva+Alves.pdf
http://localhost:8080/tede/bitstream/jspui/3045/1/license.txt
bitstream.checksum.fl_str_mv 9ab9b1cc9d4d0d5f1db5192ae5874f88
19f76cb1659ca9980c53a4339912f193
f1f747956e87e7d52041817e714fc33c
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313653437661184