Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Fernandes, Felipe Marinho lattes
Orientador(a): Silva, Clarissa Oliveira da
Banca de defesa: Pereira, Marcio Soares, Rodrigues, Victor de Oliveira, Silva J?nior, Ant?nio Marques da
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Qu?mica
Departamento: Instituto de Qu?mica
País: Brasil
Palavras-chave em Português:
DFT
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/5428
Resumo: The world energy matrix is mostly dependent on petroleum-based fuels. However, this pattern leads to several negative impacts mainly on the Earth's atmosphere. In addition, it is well known that, following the current rate of oil consumption, human kind might run out of these sources in less than 50 years. Therefore, the adoption of a sustainable energy matrix is fundamental for the future. Hydrogen is an excellent candidate to take over the current energy matrix. When burned, it produces water as a product (considerably less harmful than the products of combustion of fossil fuels), and in car engines, for example, it?s up to three times more efficient than gasoline. There are a few ways, however, to produce hydrogen. The most usual, nowadays, are steam reform processes. However, there is a process that has been revisited: steam reforming through chemical cycles. Due to nanotechnology, iron oxide-based nanocatalysts were made possible again by increasing the resistance of these important participants in the reactions involved in the process and thus making possible this method of hydrogen production. So, we will approach with a theoretical bias the reduction stage of the magnetite (chosen catalyst) in the steam reforming through chemical cycles: CH4 + 4Fe3O4 ? CO2 + H2O + 12FeO. We approached magnetite, which is a mineral, solid at room temperature and pressure and this solid has minimal formula as Fe3O4. The magnetite has been approximated to a cluster structure, which is a set of atoms representing the solid structure, Fe12O16. Due to the magnetic properties of the mineral, the reaction steps have been studied in three different electronic state levels: singlet, triplet and quintet. So far, triplet multiplicity has been observed as the ground state of the cluster study conducted that considered from one Fe3O4 unit to four units, where the triplet difference for singlet and quintet was at least 94 kcal/mole for cluster with BPW91 functional and dual polarized LAV2P base (BPW91 / LAV2P **). The largest cluster, Fe12O16, was also adopted as cluster in chemical reaction steps. The results on the singlet, triplet and quintet multiplicity were evaluated and a physical adsorption channel was proposed with four singlet products and five products in both triplet and quintet. The removal of one hydrogen from the methane to give continuity to the chemical reaction generating products of chemisorption was evaluated in these three multiplicities. Two chemisorption products were located in singlet and also in triplet. But only one product was found in quintet. Proposals for transition states were also suggested in this work as an attempt to connect the steps of physisorption and chemisorption. For singlet, the Down_H_O channel had a binding barrier of approximately 90 kcal/mole and Up_H_Otetra presented a barrier of approximately 45 kcal/mole. In triplet, the barriers found were approximately 20 kcal/mole and 60 kcal/mole for the channels Up_H_Oocta and Up_H_Otetra respectively. In quintet, only one channel was found and the barrier, Up_H_Oocta, was around 65 kcal/mole.
id UFRRJ-1_cbf318a8db3d8cf36be50f403028bf86
oai_identifier_str oai:localhost:jspui/5428
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Silva, Clarissa Oliveira daCPF: 014.109.957-71Pereira, M?rcio SoaresCPF: 082.299.327-94Pereira, Marcio SoaresRodrigues, Victor de OliveiraSilva J?nior, Ant?nio Marques daCPF: 142.251.697-07http://lattes.cnpq.br/7673838084072151Fernandes, Felipe Marinho2022-02-23T21:32:43Z2019-03-14FERNANDES, Felipe Marinho. Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos. 2019. 77 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Qu?mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2018.https://tede.ufrrj.br/jspui/handle/jspui/5428The world energy matrix is mostly dependent on petroleum-based fuels. However, this pattern leads to several negative impacts mainly on the Earth's atmosphere. In addition, it is well known that, following the current rate of oil consumption, human kind might run out of these sources in less than 50 years. Therefore, the adoption of a sustainable energy matrix is fundamental for the future. Hydrogen is an excellent candidate to take over the current energy matrix. When burned, it produces water as a product (considerably less harmful than the products of combustion of fossil fuels), and in car engines, for example, it?s up to three times more efficient than gasoline. There are a few ways, however, to produce hydrogen. The most usual, nowadays, are steam reform processes. However, there is a process that has been revisited: steam reforming through chemical cycles. Due to nanotechnology, iron oxide-based nanocatalysts were made possible again by increasing the resistance of these important participants in the reactions involved in the process and thus making possible this method of hydrogen production. So, we will approach with a theoretical bias the reduction stage of the magnetite (chosen catalyst) in the steam reforming through chemical cycles: CH4 + 4Fe3O4 ? CO2 + H2O + 12FeO. We approached magnetite, which is a mineral, solid at room temperature and pressure and this solid has minimal formula as Fe3O4. The magnetite has been approximated to a cluster structure, which is a set of atoms representing the solid structure, Fe12O16. Due to the magnetic properties of the mineral, the reaction steps have been studied in three different electronic state levels: singlet, triplet and quintet. So far, triplet multiplicity has been observed as the ground state of the cluster study conducted that considered from one Fe3O4 unit to four units, where the triplet difference for singlet and quintet was at least 94 kcal/mole for cluster with BPW91 functional and dual polarized LAV2P base (BPW91 / LAV2P **). The largest cluster, Fe12O16, was also adopted as cluster in chemical reaction steps. The results on the singlet, triplet and quintet multiplicity were evaluated and a physical adsorption channel was proposed with four singlet products and five products in both triplet and quintet. The removal of one hydrogen from the methane to give continuity to the chemical reaction generating products of chemisorption was evaluated in these three multiplicities. Two chemisorption products were located in singlet and also in triplet. But only one product was found in quintet. Proposals for transition states were also suggested in this work as an attempt to connect the steps of physisorption and chemisorption. For singlet, the Down_H_O channel had a binding barrier of approximately 90 kcal/mole and Up_H_Otetra presented a barrier of approximately 45 kcal/mole. In triplet, the barriers found were approximately 20 kcal/mole and 60 kcal/mole for the channels Up_H_Oocta and Up_H_Otetra respectively. In quintet, only one channel was found and the barrier, Up_H_Oocta, was around 65 kcal/mole.A matriz energ?tica mundial ? dependente majoritariamente dos combust?veis ? base de petr?leo. Por?m, este padr?o acarreta em diversos impactos negativos principalmente no meio ambiente. ? sabido que, seguindo a taxa atual de consumo de petr?leo, estes insumos devem acabar em menos de 50 anos. Por isso, a ado??o de uma matriz energ?tica sustent?vel ? fundamental para o futuro. O hidrog?nio ? um excelente candidato para assumir as r?deas desta matriz energ?tica. Quando queimado, produz ?gua como produto (consideravelmente menos nociva que os produtos de combust?o de combust?veis f?sseis) e, em motores de carros, por exemplo, s?o at? tr?s vezes mais eficientes que gasolina. Existem algumas maneiras, no entanto, de produzir hidrog?nio. A mais usual, atualmente, s?o os processos de reforma a vapor. Entretanto, um processo vem sendo revisitado: a reforma a vapor via ciclos qu?micos. Isto acontece porque devido ? nanotecnologia, nanocatalisadores ? base de ?xido de ferro foram possibilitados, aumentando a resist?ncia desses importantes participantes das rea??es envolvidas no processo e tornando, ent?o, este m?todo de s?ntese de produ??o de hidrog?nio poss?vel. Com isso, abordaremos com um vi?s te?rico a etapa de redu??o da magnetita (catalisador escolhido) na reforma catal?tica a vapor via ciclos qu?micos: CH4 + 4Fe3O4 ? CO2 + H2O + 12FeO. Para isso, foi abordado a magnetita, que ? um mineral, s?lido ? temperatura e press?o ambiente e tem f?rmula m?nima Fe3O4. A magnetita foi aproximada para uma estrutura de cluster, que ? um conjunto de ?tomos que representam a estrutura s?lida, Fe12O16. Devido ?s propriedades magn?ticas do mineral, as etapas de rea??o foram estudadas em tr?s n?veis de estado eletr?nico diferentes: singleto, tripleto e quinteto. At? o momento, a multiplicidade tripleto foi observada como o estado fundamental do estudo de cluster realizado que ?varreu? desde uma unidade de Fe3O4 at? quatro unidades, onde a diferen?a do tripleto para singleto e quinteto foi de pelo menos 94 kcal/mol para o cluster com o funcional BPW91 e base LAV2P duplamente polarizada (BPW91/LAV2P**). O maior cluster, Fe12O16, foi adotado, tamb?m, como o cluster empregado nas etapas com rea??es qu?micas. Os resultados na multiplicidade singleto, tripleto e quinteto foram avaliados e foram propostos canais de adsor??o f?sica (fisissor??o) com quatro produtos de fisissor??o em singleto e cinco produtos de fisissor??o tanto em tripleto quanto em quinteto. A remo??o de um hidrog?nio do metano para dar continuidade ? rea??o qu?mica gerando produtos de quimissor??o foi avaliada nestas tr?s multiplicidades. Dois produtos de quimissor??o foram localizados em singleto e tamb?m em tripleto. Por?m apenas um produto foi encontrado em quinteto. Propostas de estados de transi??o foram sugeridas tamb?m neste trabalho como uma tentativa de conectar as etapas de fisissor??o e quimissor??o. Para singleto, o canal Baixo_H_O teve uma barreira de liga??o de aproximadamente 90 kcal/mol e Cima_H_Otetra apresentou uma barreira de aproximadamente 45 kcal/mol. Em tripleto as barreiras encontradas foram de aproximadamente 20 kcal/mol e 60 kcal/mol para os canais Cima_H_Oocta e Cima_H_Otetra respectivamente. Em quinteto apenas um canal foi encontrado e a barreira, para Cima_H_Oocta, foi por volta de 65 kcal/mol.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-02-23T21:32:43Z No. of bitstreams: 1 2019 - Felipe Marinho Fernandes.pdf: 4356798 bytes, checksum: c2cedaf8262de92c0ac4704a5c6a4a08 (MD5)Made available in DSpace on 2022-02-23T21:32:43Z (GMT). No. of bitstreams: 1 2019 - Felipe Marinho Fernandes.pdf: 4356798 bytes, checksum: c2cedaf8262de92c0ac4704a5c6a4a08 (MD5) Previous issue date: 2019-03-14CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/68344/2019%20-%20Felipe%20Marinho%20Fernandes.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Qu?micaUFRRJBrasilInstituto de Qu?micaARAIA, H.; MACHIDA, M. Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion. Applied Catalysis A: General, Fukuoka, Jap?o, 20 Setembro 1995. 161-176. ATKINS, P. et al. Inorganic Chemistry. 5?. ed. Nova York, EUA: Oxford University Press, v. Unico, 2010. ATKINS, P.; PAULA, J. D. Physical Chemistry. 8?. ed. Oxford: Oxford Press, 2006. AZUAGA. Danos ambientais causados por ve?culos leves no Brasil. Tese de mestrado em Engenharia - UFRJ, 2000. BAJPAI, A. K.; GUPTA, R. Synthesis and characterization of magnetite (Fe3O4)? Polyvinyl alcohol? based nanocomposites and study of superparamagnetism. Polymer Composites, Jabalpur, India, 11 Novembro 2009. 245-255. BAYHAM, S.; BREAULT, R.; WEBER, J. Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor. Energies, Morgantown, EUA., 10 Agosto 2017. BBC. BBC Geography. BBC Newspaper UK, 2014. Disponivel em: < html>. Acesso em: 06 maio 2018. BEZERRA, A. P.; TUESTA, N. C. Uma Introdu??o ?s Equa??es Funcionais. UFPB. Jo?o Pessoa, PB, p. 1-49. 2014. BHAVSAR, S. et al. Chemical looping: To combustion and beyond. Elsevier, Pittsburg, 1 Junho 2014. 96-105. BHOSALE, R. R. et al. Solar hydrogen production via thermochemical iron oxide?iron sulfate water splitting cycle. International Journal of Hydrogen Energy, Doha, Qatar, 19 Dezembro 2014. 1639-1650. BLEEKER, M. F.; VERINGA, H. J.; KERSTEN, S. R. A. Deactivation of iron oxide used in the steam-iron process to produce hydrogen. Applied Catalysis A: General, Enschede, Holanda, 04 janeiro 2009. 5-17. BOCHEVAROV, A. D. et al. A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem, Nova York, EUA, 04 Julho 2013. 2110-2142. CAED-UFMG. Liga??es qu?micas nos compostos de coordena??o: teoria do campo cristalino (TCC). UFMG. Belo Horizonte, Minas Gerais, p. 1-15. 2013. CAMPOS, R. C. D. Rea??es Qu?micas. PUC-RJ. Rio de Janeiro, p. 1-63. 2000. CANO, R.; YUS, M.; RAMON, D. J. Impregnated palladium on magnetite as catalyst for multicomponent reductive amination reactions and other related reducing processes. Tetrahedron, Alicante, Espanha, 11 Agosto 2011. 8079-8085. CAO, A.; LU, R.; VESER, G. Stabilizing metal nanoparticles for heterogeneous catalysis. Physical Chemistry Chemical Physics, Pittsburg, EUA, 06 Setembro 2010. 13499-13510. CERDAN, S. et al. Monoclonal antibody? coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magnetic Ressonance in Medicine, 15 Novembro 1989. 151-163. CETESB. Qualidade do Ar no Estado de S?o Paulo. Governo do Estado de S?o Paulo ? Secretaria do Meio Ambiente, Companhia Ambiental do Estado de S?o Paulo. S?o Paulo. 2004. CHEN, C. et al. Hydrogen from Pyrolysis Oil by Chemical Looping of a Sol?Gel- Prepared Iron(III) Oxide on Magnesium Aluminate as Oxygen Carrier. Energy Technology, Nanjing, China, 2006. 2025-2031. CHEN, T. S.; ALLDREDGE, G. P.; WETTE, F. W. D. Surface Thermodynamic Functions for NaCl. The Journal of Chemical Physics, Austin, EUA, 05 Dezembro 1971. 3121-3126. CHOI, Y. G. et al. Steam reforming of glycerol for hydrogen production over supported nickel catalysts on alumina. Journal of Nanoscience and Nanotechnology, Gwangju, Rep?blica da Coreia, 01 Janeiro 2013. 653-656. CORMOS, C.-C. Hydrogen production from fossil fuels with carbon capture and storage based on chemical looping systems. International Journal of Hydrogen Energy, Cluj-Napoca, Rom?nia, 27 Mar?o 2011. 5960-5971. CRAMER, C. Essential of Computacional Chemistry: theories and models. 2?. ed. [S.l.]: Wiley, 2004. CRISPIM, L. W. S.; FURONES, M. Y. B.; LOUREIRO, F. D. S. Caracteriza??o de superf?cies de energia potencial. XI Simp?sio de Mec?nica Computacional, Juiz de Fora, MG, 28 maio 2014. 1-13. DE CARVALHO ALVES, S.; DE ASSI, A. J.; RIBEIRO DAMASCENO, J. J. Reforma a vapor do metano para produ??o de hidrog?nio: estudo termodin?mico e prot?tipo de modelo matem?tico de reator com membrana. Universidade Federal de Uberl?ndia. Uberl?ndia, p. 197. 2005. DENIZA, I. et al. Hydrogen production from marine biomass by hydrothermal gasification. Energy Conversion and Management, Izmir, Turquia, 10 Mar?o 2015. 124-130. DUBEY, V.; KAIN, V. Synthesis of magnetite by coprecipitation and sintering and its characterization. Materials and Manufacturing Processes , Mumbai, India, 20 Novembro 2017. 835-839. E.S., L. et al. Conserva??o de energia: efici?ncia energ?tica de instala??es e equipamentos. Itajub?, MG: FUPA, v. Vol. ?nico, 2001. p. 30-89 p. FAN, L.-S.; LI, F. Chemical Looping Technology and Its Fossil Energy Conversion Applications. Industrial & Engineering Chemistry Research, Ohio, EUA., 30 Julho 2010. 10200-10211. GALLUCCI, F. et al. Steam Reforming of Methane in a Membrane Reactor: An Industrial Case Study. Industrial & Engineering Chemistry Research, Genova, It?lia, 04 Abril 2006. 2994 - 3000. GO, K. S. et al. hydrogen production from two-step steam methane reforming in a fluidized bed reactor. International Journal of Hydrogen Energy, Gwahnango, Rep?blica da Cor?ia , 30 Dezembro 2008. Vol. 34, N?3, 1301-1309. GOMES, D. S. D.; DERENZO, S. Estudo da viabilidade t?cnica do processo chemical looping combustion como alternativa de redu??o das emiss?es de carbono. Revista IPT | Tecnologia e Inova??o , S?o Paulo, 2016. HACKERA, V. et al. Hydrogen production by steam?iron process. Journal of Power Sources, Graz, Austria, 05 Abril 2000. 531-535. HANWELL, M. D. et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, Agosto 13 2012. 4- 17. HASSANI, A. et al. Enhanced removal of basic violet 10 by heterogeneous sono-Fenton process using magnetite nanoparticles. Ultrasonics Sonochemistry, Erzurum, Turquia, 27 Novembro 2017. 390-402. HAY, P. J.; WADT, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, Novo M?xico, EUA, 02 Setembro 1985. 270-283. HAYASHI, H.; HAKUTA, Y. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water. Materials: US Nacional Institute of Health, Tsubaka, Jap?o, 17 Junho 2010. 3794?3817. HILL, R. J.; CRAIG, J. R.; GIBBS, G. V. Systematics of the spinel structure type. Physics and Chemistry of Minerals, Virginia, EUA, 12 Janeiro 1979. 317-339. HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. PHYSICAL REVIEW JOURNALS ARCHIVE, Paris, Fran?a, 9 Novembro 1964. HOLLADAY, J. D. et al. An overview of hydrogen production technologies. Catalysis Today, Richland, EUA, 21 Outubro 2008. 244-260. HOUSECROFT, C. E. The Heavier d-Block Metals Aspects of Inorganic and Coordination Chemistry. Oxford, Inglaterra: Oxford University Press , v. ?nico, 1997. HUDSON INSTITUTE OF MINERALOGY. Spinel Groups. Mindat, 2000. Disponivel em: <https://www.mindat.org/min-29156.html>. Acesso em: 24 maio 2018. INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Molecular Simulations in Chemical Engineering: Periodic Box and Minimum Image Convention. NPTEL, 2012. Disponivel em: <http://nptel.ac.in/courses/103103036/15>. Acesso em: 26 Maio 2018. INTERNATIONAL ENERGY AGENCY. World Energy Outlook. 1?. ed. Paris: OECD/IEA, 2018. INTERNATIONAL ENERGY AGENCY. IEA Atlas of Energy. Energy Atlas, 2015. Disponivel em: <http://energyatlas.iea.org/#!/tellmap/-1002896040/1>. Acesso em: 06 maio 2018. IPCC GUIDELINES FOR NATIONAL GREENHOUSE GAS INVENTORIES. IPCC. Guidelines for National Greenhouse Gas Inventories, 2015. Disponivel em: <https://www.ipcc-nggip.iges.or.jp/>. Acesso em: 6 maio 2018. JING-DING, L.; YING-QING, L.; TIAN-SHEN, D. Improvement on the combustion of a hydrogen fueled engine. Elsevier, Hangzhou, China, 17 Fevereiro 1986. Vol. 11, N? 10, 661-668. JR., G. A. H.; SATTERFIELD, C. N. Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst. Industrial & Engineering Chemistry Process Design and Development, 01 Maio 2002. 696-705. KABASHIMA, H.; FUTAMURA, S. Hydrogen Production via Steam Reforming of Methane with Nonthermal Plasma. Fuel Chemistry Division Preprints, Tsukuba, Jap?o, 2002. 661-662. KIERZKOWSKA, A. M. et al. Development of Iron Oxide Carriers for Chemical Looping Combustion Using Sol?Gel. Industrial & Engineering Chemistry Research, Zurique, Su??a, 2010. 5383-5391. KIRCHHOFF, M.; SPECHT, U.; VESER, G. Synthesis and Characterization of HighTemperature Stable Nanocomposite Catalysts. NSTI-Nanotech, Pittsburg, EUA, 2004. 268-271. LEVINE, I. Quantum Chemistry. 7?. ed. [S.l.]: Pearson, 2013. LEWARS, E. G. Introduction to the Theory and Aplications of Molecular and Quantum Mechanics. [S.l.]: [s.n.], v. XVI, 2011. LU HAN, Z. Z. G. M. B. Heterogeneous modeling of chemical-looping combustion. Part 1: Reactor model. Chemical Engineering Science, Storrs, EUA, 14 Setembro 2013. 233-249. LYNGFELT, A.; LECKNER, B.; MATTISSON, T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science, Gotenberg, Su?cia, 2 dezembro 2000. 3101-3113. MATTEIS, L. D. et al. Ultrathin MgO Coating of Superparamagnetic Magnetite Nanoparticles by Combined Coprecipitation and Sol?Gel Synthesis. Chemistry of Materials, Zaragoza, Espanha, 4 Janeiro 2012. 451?456. MEERODA, S. et al. Magnetite nanoparticles stabilized with polymeric bilayer of poly(ethylene glycol) methyl ether?poly(?-caprolactone) copolymers. Polymer, Phitsanulok, Taiwan, 11 Julho 2008. 3950-3956. NA??ES UNIDAS. Na??es Unidas no Brasil. Energia Limpa e Acess?vel., 2015. Disponivel em: <https://nacoesunidas.org/pos2015/ods7/>. Acesso em: 12 maio 2018. NEESE, F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012. 73-78. PARKINSON, G. S. Iron Oxide Surfaces. Surface Science Reports, Viena, ?ustria., 03 junho 2016. Vol. 71, p. 272-365. PEN?, J. A.; LORENTE, E.; HERGUIDO, J. "Steam-Iron" Process for Hydrogen Production: Recent Advances. 18th World Hydrogen Energy Conference, Spring- Verlag, Alemanha, 2010. PENNSTATE COLLEGE OF EARTH AND MINERAL SCIENCES. e-Education Institute. Materials in Today's World. Disponivel em: <https://www.e- education.psu.edu/matse81/node/2133>. Acesso em: 23 Maio 2018. RENEWABLE ENERGY WORLD. RenewableEnergyWorld. Renewable Energy Network for news & information, 2018. Disponivel em: <https://www.renewableenergyworld.com/index/tech.html>. Acesso em: 06 maio 2018. RYD?N, M.; LYNGFELT, A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. International Journal of Hydrogen Energy, Gotenburgo, Su?cia, 26 Janeiro 2006. Vol. 31, 1271-1283. RYD?N, M.; RAMOS, P. H2 production with CO2 capture by sorption enhanced chemical-looping reforming using NiO as oxygen carrier and CaO como sorvente de CO2. Fuel Processing Technology, Gotenburgo, Su?cia, 13 Janeiro 2012. Vol. 96, p. 27-36. SANDERS, T.; PAPAS, P.; VESERAB, G. Supported nanocomposite catalysts for high-temperature partial oxidation of methane. Chemical Engineering Journal, Pittsburg, EUA, 22 Abril 2008. 122-132. SICKAFUS, K. E.; WILLS, J. M.; GRIMES, N. W. Structure of Spinel. Journal of the American Ceramic Society, 21 Dezembro 2004. 3279-3292. SOLUNKE, R. D.; VESER, G. Hydrogen Production via Chemical Looping Steam Reforming in a Periodically Operated Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, Pittsburg, EUA, 14 Junho 2010. 11037 - 11044. SON, S. R.; GO, K. S.; KIM, S. D. Thermogravimetric Analysis of Copper Oxide for Chemical-Looping Hydrogen Generation. Industrial & Engineering Chemistry Research, Daejon, Republica Federativa da Coreia, 3 Julho 2009. 380-387. SZABO, A.; OSTLUND, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. [S.l.]: Dover, 1962. TEIXEIRA, E. C.; FELTES, S.; SANTANA, E. R. R. Estudo Das Emiss?es De Fontes M?veis Na Regi?o. Qu?mica Nova, S?o Paulo, Vol. 31, 2008. 244. TRZESNIAK, D. R. F. M?todos te?ricos em qu?mica molecular. USP. S?o Paulo, p. 31-55. 2002. U.S. DEPARTAMENT OF ENERGY. Alternative Fuels Data Center. Energy Efficiency & Renewable Energy, 2017. Disponivel em: <https://www.afdc.energy.gov/fuels/hydrogen_production.html>. Acesso em: 13 maio 2018. VESSER, G.; LIANG, S. Nanocatalysts for the Water-Gas-Shift Reaction. Nanomaterials and Energy, Pittsburg, EUA, 04 Outubro 2011. 117-135. WALZ, F. The Verwey transition - a topical review. Journal of Physics: Condens. Matter, Sttutgart, Alemanha, 15 Mar?o 2002. 1115-1125. WOODCOCK, C. R.; MASON, J. S. Bulk solids handling: an introduction to the practice and technology. 1?. ed. Nova York, EUA: Blackie & Son Ltd, v. ?nico, 1987. WORLD COAL ASSOCIATION. World Coal. World Coal, 2017. Disponivel em: <https://www.worldcoal.org/coal/coal-mining>. Acesso em: 06 maio 2018. WUA, W.; LIOUB, Y.-C.; YANGA, H.-T. Design and evaluation of a heat-integrated hydrogen production system by reforming methane and carbon dioxide. Journal of the Taiwan Institute of Chemical Engineers, Dulion, Taiwan, 11 maio 2013. 929-935. ZBORIL, R.; MASHLAN, M.; PETRIDIS, D. Iron(III) Oxides from Thermal ProcessesSynthesis, Structural and Magnetic Properties, M?ssbauer Spectroscopy Characterization, and Applications. Chemistry of Materials, Olomuc, Rep?blica Checa, 28 Fevereiro 2002. 969?982.Reforma Catal?tica?xido de FerroDFTMultiplicidadeCatalytic ReformIron OxideMultiplicityQu?micaDescri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Felipe Marinho Fernandes.pdf.jpg2019 - Felipe Marinho Fernandes.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/5428/4/2019+-+Felipe+Marinho+Fernandes.pdf.jpg8c1280dca4077478b5fad29883580c72MD54TEXT2019 - Felipe Marinho Fernandes.pdf.txt2019 - Felipe Marinho Fernandes.pdf.txttext/plain171829http://localhost:8080/tede/bitstream/jspui/5428/3/2019+-+Felipe+Marinho+Fernandes.pdf.txt8dff2af7fde0bb9e66d46be686a1616cMD53ORIGINAL2019 - Felipe Marinho Fernandes.pdf2019 - Felipe Marinho Fernandes.pdfapplication/pdf4356798http://localhost:8080/tede/bitstream/jspui/5428/2/2019+-+Felipe+Marinho+Fernandes.pdfc2cedaf8262de92c0ac4704a5c6a4a08MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/5428/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/54282022-02-24 01:00:17.658oai:localhost:jspui/5428Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-02-24T04:00:17Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos
title Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos
spellingShingle Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos
Fernandes, Felipe Marinho
Reforma Catal?tica
?xido de Ferro
DFT
Multiplicidade
Catalytic Reform
Iron Oxide
Multiplicity
Qu?mica
title_short Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos
title_full Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos
title_fullStr Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos
title_full_unstemmed Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos
title_sort Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos
author Fernandes, Felipe Marinho
author_facet Fernandes, Felipe Marinho
author_role author
dc.contributor.advisor1.fl_str_mv Silva, Clarissa Oliveira da
dc.contributor.advisor1ID.fl_str_mv CPF: 014.109.957-71
dc.contributor.advisor-co1.fl_str_mv Pereira, M?rcio Soares
dc.contributor.advisor-co1ID.fl_str_mv CPF: 082.299.327-94
dc.contributor.referee1.fl_str_mv Pereira, Marcio Soares
dc.contributor.referee2.fl_str_mv Rodrigues, Victor de Oliveira
dc.contributor.referee3.fl_str_mv Silva J?nior, Ant?nio Marques da
dc.contributor.authorID.fl_str_mv CPF: 142.251.697-07
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7673838084072151
dc.contributor.author.fl_str_mv Fernandes, Felipe Marinho
contributor_str_mv Silva, Clarissa Oliveira da
Pereira, M?rcio Soares
Pereira, Marcio Soares
Rodrigues, Victor de Oliveira
Silva J?nior, Ant?nio Marques da
dc.subject.por.fl_str_mv Reforma Catal?tica
?xido de Ferro
DFT
Multiplicidade
topic Reforma Catal?tica
?xido de Ferro
DFT
Multiplicidade
Catalytic Reform
Iron Oxide
Multiplicity
Qu?mica
dc.subject.eng.fl_str_mv Catalytic Reform
Iron Oxide
Multiplicity
dc.subject.cnpq.fl_str_mv Qu?mica
description The world energy matrix is mostly dependent on petroleum-based fuels. However, this pattern leads to several negative impacts mainly on the Earth's atmosphere. In addition, it is well known that, following the current rate of oil consumption, human kind might run out of these sources in less than 50 years. Therefore, the adoption of a sustainable energy matrix is fundamental for the future. Hydrogen is an excellent candidate to take over the current energy matrix. When burned, it produces water as a product (considerably less harmful than the products of combustion of fossil fuels), and in car engines, for example, it?s up to three times more efficient than gasoline. There are a few ways, however, to produce hydrogen. The most usual, nowadays, are steam reform processes. However, there is a process that has been revisited: steam reforming through chemical cycles. Due to nanotechnology, iron oxide-based nanocatalysts were made possible again by increasing the resistance of these important participants in the reactions involved in the process and thus making possible this method of hydrogen production. So, we will approach with a theoretical bias the reduction stage of the magnetite (chosen catalyst) in the steam reforming through chemical cycles: CH4 + 4Fe3O4 ? CO2 + H2O + 12FeO. We approached magnetite, which is a mineral, solid at room temperature and pressure and this solid has minimal formula as Fe3O4. The magnetite has been approximated to a cluster structure, which is a set of atoms representing the solid structure, Fe12O16. Due to the magnetic properties of the mineral, the reaction steps have been studied in three different electronic state levels: singlet, triplet and quintet. So far, triplet multiplicity has been observed as the ground state of the cluster study conducted that considered from one Fe3O4 unit to four units, where the triplet difference for singlet and quintet was at least 94 kcal/mole for cluster with BPW91 functional and dual polarized LAV2P base (BPW91 / LAV2P **). The largest cluster, Fe12O16, was also adopted as cluster in chemical reaction steps. The results on the singlet, triplet and quintet multiplicity were evaluated and a physical adsorption channel was proposed with four singlet products and five products in both triplet and quintet. The removal of one hydrogen from the methane to give continuity to the chemical reaction generating products of chemisorption was evaluated in these three multiplicities. Two chemisorption products were located in singlet and also in triplet. But only one product was found in quintet. Proposals for transition states were also suggested in this work as an attempt to connect the steps of physisorption and chemisorption. For singlet, the Down_H_O channel had a binding barrier of approximately 90 kcal/mole and Up_H_Otetra presented a barrier of approximately 45 kcal/mole. In triplet, the barriers found were approximately 20 kcal/mole and 60 kcal/mole for the channels Up_H_Oocta and Up_H_Otetra respectively. In quintet, only one channel was found and the barrier, Up_H_Oocta, was around 65 kcal/mole.
publishDate 2019
dc.date.issued.fl_str_mv 2019-03-14
dc.date.accessioned.fl_str_mv 2022-02-23T21:32:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERNANDES, Felipe Marinho. Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos. 2019. 77 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Qu?mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2018.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/5428
identifier_str_mv FERNANDES, Felipe Marinho. Descri??o te?rica da rea??o de redu??o na reforma a vapor via ciclos qu?micos. 2019. 77 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Qu?mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2018.
url https://tede.ufrrj.br/jspui/handle/jspui/5428
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ARAIA, H.; MACHIDA, M. Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion. Applied Catalysis A: General, Fukuoka, Jap?o, 20 Setembro 1995. 161-176. ATKINS, P. et al. Inorganic Chemistry. 5?. ed. Nova York, EUA: Oxford University Press, v. Unico, 2010. ATKINS, P.; PAULA, J. D. Physical Chemistry. 8?. ed. Oxford: Oxford Press, 2006. AZUAGA. Danos ambientais causados por ve?culos leves no Brasil. Tese de mestrado em Engenharia - UFRJ, 2000. BAJPAI, A. K.; GUPTA, R. Synthesis and characterization of magnetite (Fe3O4)? Polyvinyl alcohol? based nanocomposites and study of superparamagnetism. Polymer Composites, Jabalpur, India, 11 Novembro 2009. 245-255. BAYHAM, S.; BREAULT, R.; WEBER, J. Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor. Energies, Morgantown, EUA., 10 Agosto 2017. BBC. BBC Geography. BBC Newspaper UK, 2014. Disponivel em: < html>. Acesso em: 06 maio 2018. BEZERRA, A. P.; TUESTA, N. C. Uma Introdu??o ?s Equa??es Funcionais. UFPB. Jo?o Pessoa, PB, p. 1-49. 2014. BHAVSAR, S. et al. Chemical looping: To combustion and beyond. Elsevier, Pittsburg, 1 Junho 2014. 96-105. BHOSALE, R. R. et al. Solar hydrogen production via thermochemical iron oxide?iron sulfate water splitting cycle. International Journal of Hydrogen Energy, Doha, Qatar, 19 Dezembro 2014. 1639-1650. BLEEKER, M. F.; VERINGA, H. J.; KERSTEN, S. R. A. Deactivation of iron oxide used in the steam-iron process to produce hydrogen. Applied Catalysis A: General, Enschede, Holanda, 04 janeiro 2009. 5-17. BOCHEVAROV, A. D. et al. A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem, Nova York, EUA, 04 Julho 2013. 2110-2142. CAED-UFMG. Liga??es qu?micas nos compostos de coordena??o: teoria do campo cristalino (TCC). UFMG. Belo Horizonte, Minas Gerais, p. 1-15. 2013. CAMPOS, R. C. D. Rea??es Qu?micas. PUC-RJ. Rio de Janeiro, p. 1-63. 2000. CANO, R.; YUS, M.; RAMON, D. J. Impregnated palladium on magnetite as catalyst for multicomponent reductive amination reactions and other related reducing processes. Tetrahedron, Alicante, Espanha, 11 Agosto 2011. 8079-8085. CAO, A.; LU, R.; VESER, G. Stabilizing metal nanoparticles for heterogeneous catalysis. Physical Chemistry Chemical Physics, Pittsburg, EUA, 06 Setembro 2010. 13499-13510. CERDAN, S. et al. Monoclonal antibody? coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magnetic Ressonance in Medicine, 15 Novembro 1989. 151-163. CETESB. Qualidade do Ar no Estado de S?o Paulo. Governo do Estado de S?o Paulo ? Secretaria do Meio Ambiente, Companhia Ambiental do Estado de S?o Paulo. S?o Paulo. 2004. CHEN, C. et al. Hydrogen from Pyrolysis Oil by Chemical Looping of a Sol?Gel- Prepared Iron(III) Oxide on Magnesium Aluminate as Oxygen Carrier. Energy Technology, Nanjing, China, 2006. 2025-2031. CHEN, T. S.; ALLDREDGE, G. P.; WETTE, F. W. D. Surface Thermodynamic Functions for NaCl. The Journal of Chemical Physics, Austin, EUA, 05 Dezembro 1971. 3121-3126. CHOI, Y. G. et al. Steam reforming of glycerol for hydrogen production over supported nickel catalysts on alumina. Journal of Nanoscience and Nanotechnology, Gwangju, Rep?blica da Coreia, 01 Janeiro 2013. 653-656. CORMOS, C.-C. Hydrogen production from fossil fuels with carbon capture and storage based on chemical looping systems. International Journal of Hydrogen Energy, Cluj-Napoca, Rom?nia, 27 Mar?o 2011. 5960-5971. CRAMER, C. Essential of Computacional Chemistry: theories and models. 2?. ed. [S.l.]: Wiley, 2004. CRISPIM, L. W. S.; FURONES, M. Y. B.; LOUREIRO, F. D. S. Caracteriza??o de superf?cies de energia potencial. XI Simp?sio de Mec?nica Computacional, Juiz de Fora, MG, 28 maio 2014. 1-13. DE CARVALHO ALVES, S.; DE ASSI, A. J.; RIBEIRO DAMASCENO, J. J. Reforma a vapor do metano para produ??o de hidrog?nio: estudo termodin?mico e prot?tipo de modelo matem?tico de reator com membrana. Universidade Federal de Uberl?ndia. Uberl?ndia, p. 197. 2005. DENIZA, I. et al. Hydrogen production from marine biomass by hydrothermal gasification. Energy Conversion and Management, Izmir, Turquia, 10 Mar?o 2015. 124-130. DUBEY, V.; KAIN, V. Synthesis of magnetite by coprecipitation and sintering and its characterization. Materials and Manufacturing Processes , Mumbai, India, 20 Novembro 2017. 835-839. E.S., L. et al. Conserva??o de energia: efici?ncia energ?tica de instala??es e equipamentos. Itajub?, MG: FUPA, v. Vol. ?nico, 2001. p. 30-89 p. FAN, L.-S.; LI, F. Chemical Looping Technology and Its Fossil Energy Conversion Applications. Industrial & Engineering Chemistry Research, Ohio, EUA., 30 Julho 2010. 10200-10211. GALLUCCI, F. et al. Steam Reforming of Methane in a Membrane Reactor: An Industrial Case Study. Industrial & Engineering Chemistry Research, Genova, It?lia, 04 Abril 2006. 2994 - 3000. GO, K. S. et al. hydrogen production from two-step steam methane reforming in a fluidized bed reactor. International Journal of Hydrogen Energy, Gwahnango, Rep?blica da Cor?ia , 30 Dezembro 2008. Vol. 34, N?3, 1301-1309. GOMES, D. S. D.; DERENZO, S. Estudo da viabilidade t?cnica do processo chemical looping combustion como alternativa de redu??o das emiss?es de carbono. Revista IPT | Tecnologia e Inova??o , S?o Paulo, 2016. HACKERA, V. et al. Hydrogen production by steam?iron process. Journal of Power Sources, Graz, Austria, 05 Abril 2000. 531-535. HANWELL, M. D. et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, Agosto 13 2012. 4- 17. HASSANI, A. et al. Enhanced removal of basic violet 10 by heterogeneous sono-Fenton process using magnetite nanoparticles. Ultrasonics Sonochemistry, Erzurum, Turquia, 27 Novembro 2017. 390-402. HAY, P. J.; WADT, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, Novo M?xico, EUA, 02 Setembro 1985. 270-283. HAYASHI, H.; HAKUTA, Y. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water. Materials: US Nacional Institute of Health, Tsubaka, Jap?o, 17 Junho 2010. 3794?3817. HILL, R. J.; CRAIG, J. R.; GIBBS, G. V. Systematics of the spinel structure type. Physics and Chemistry of Minerals, Virginia, EUA, 12 Janeiro 1979. 317-339. HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. PHYSICAL REVIEW JOURNALS ARCHIVE, Paris, Fran?a, 9 Novembro 1964. HOLLADAY, J. D. et al. An overview of hydrogen production technologies. Catalysis Today, Richland, EUA, 21 Outubro 2008. 244-260. HOUSECROFT, C. E. The Heavier d-Block Metals Aspects of Inorganic and Coordination Chemistry. Oxford, Inglaterra: Oxford University Press , v. ?nico, 1997. HUDSON INSTITUTE OF MINERALOGY. Spinel Groups. Mindat, 2000. Disponivel em: <https://www.mindat.org/min-29156.html>. Acesso em: 24 maio 2018. INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Molecular Simulations in Chemical Engineering: Periodic Box and Minimum Image Convention. NPTEL, 2012. Disponivel em: <http://nptel.ac.in/courses/103103036/15>. Acesso em: 26 Maio 2018. INTERNATIONAL ENERGY AGENCY. World Energy Outlook. 1?. ed. Paris: OECD/IEA, 2018. INTERNATIONAL ENERGY AGENCY. IEA Atlas of Energy. Energy Atlas, 2015. Disponivel em: <http://energyatlas.iea.org/#!/tellmap/-1002896040/1>. Acesso em: 06 maio 2018. IPCC GUIDELINES FOR NATIONAL GREENHOUSE GAS INVENTORIES. IPCC. Guidelines for National Greenhouse Gas Inventories, 2015. Disponivel em: <https://www.ipcc-nggip.iges.or.jp/>. Acesso em: 6 maio 2018. JING-DING, L.; YING-QING, L.; TIAN-SHEN, D. Improvement on the combustion of a hydrogen fueled engine. Elsevier, Hangzhou, China, 17 Fevereiro 1986. Vol. 11, N? 10, 661-668. JR., G. A. H.; SATTERFIELD, C. N. Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst. Industrial & Engineering Chemistry Process Design and Development, 01 Maio 2002. 696-705. KABASHIMA, H.; FUTAMURA, S. Hydrogen Production via Steam Reforming of Methane with Nonthermal Plasma. Fuel Chemistry Division Preprints, Tsukuba, Jap?o, 2002. 661-662. KIERZKOWSKA, A. M. et al. Development of Iron Oxide Carriers for Chemical Looping Combustion Using Sol?Gel. Industrial & Engineering Chemistry Research, Zurique, Su??a, 2010. 5383-5391. KIRCHHOFF, M.; SPECHT, U.; VESER, G. Synthesis and Characterization of HighTemperature Stable Nanocomposite Catalysts. NSTI-Nanotech, Pittsburg, EUA, 2004. 268-271. LEVINE, I. Quantum Chemistry. 7?. ed. [S.l.]: Pearson, 2013. LEWARS, E. G. Introduction to the Theory and Aplications of Molecular and Quantum Mechanics. [S.l.]: [s.n.], v. XVI, 2011. LU HAN, Z. Z. G. M. B. Heterogeneous modeling of chemical-looping combustion. Part 1: Reactor model. Chemical Engineering Science, Storrs, EUA, 14 Setembro 2013. 233-249. LYNGFELT, A.; LECKNER, B.; MATTISSON, T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science, Gotenberg, Su?cia, 2 dezembro 2000. 3101-3113. MATTEIS, L. D. et al. Ultrathin MgO Coating of Superparamagnetic Magnetite Nanoparticles by Combined Coprecipitation and Sol?Gel Synthesis. Chemistry of Materials, Zaragoza, Espanha, 4 Janeiro 2012. 451?456. MEERODA, S. et al. Magnetite nanoparticles stabilized with polymeric bilayer of poly(ethylene glycol) methyl ether?poly(?-caprolactone) copolymers. Polymer, Phitsanulok, Taiwan, 11 Julho 2008. 3950-3956. NA??ES UNIDAS. Na??es Unidas no Brasil. Energia Limpa e Acess?vel., 2015. Disponivel em: <https://nacoesunidas.org/pos2015/ods7/>. Acesso em: 12 maio 2018. NEESE, F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012. 73-78. PARKINSON, G. S. Iron Oxide Surfaces. Surface Science Reports, Viena, ?ustria., 03 junho 2016. Vol. 71, p. 272-365. PEN?, J. A.; LORENTE, E.; HERGUIDO, J. "Steam-Iron" Process for Hydrogen Production: Recent Advances. 18th World Hydrogen Energy Conference, Spring- Verlag, Alemanha, 2010. PENNSTATE COLLEGE OF EARTH AND MINERAL SCIENCES. e-Education Institute. Materials in Today's World. Disponivel em: <https://www.e- education.psu.edu/matse81/node/2133>. Acesso em: 23 Maio 2018. RENEWABLE ENERGY WORLD. RenewableEnergyWorld. Renewable Energy Network for news & information, 2018. Disponivel em: <https://www.renewableenergyworld.com/index/tech.html>. Acesso em: 06 maio 2018. RYD?N, M.; LYNGFELT, A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. International Journal of Hydrogen Energy, Gotenburgo, Su?cia, 26 Janeiro 2006. Vol. 31, 1271-1283. RYD?N, M.; RAMOS, P. H2 production with CO2 capture by sorption enhanced chemical-looping reforming using NiO as oxygen carrier and CaO como sorvente de CO2. Fuel Processing Technology, Gotenburgo, Su?cia, 13 Janeiro 2012. Vol. 96, p. 27-36. SANDERS, T.; PAPAS, P.; VESERAB, G. Supported nanocomposite catalysts for high-temperature partial oxidation of methane. Chemical Engineering Journal, Pittsburg, EUA, 22 Abril 2008. 122-132. SICKAFUS, K. E.; WILLS, J. M.; GRIMES, N. W. Structure of Spinel. Journal of the American Ceramic Society, 21 Dezembro 2004. 3279-3292. SOLUNKE, R. D.; VESER, G. Hydrogen Production via Chemical Looping Steam Reforming in a Periodically Operated Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, Pittsburg, EUA, 14 Junho 2010. 11037 - 11044. SON, S. R.; GO, K. S.; KIM, S. D. Thermogravimetric Analysis of Copper Oxide for Chemical-Looping Hydrogen Generation. Industrial & Engineering Chemistry Research, Daejon, Republica Federativa da Coreia, 3 Julho 2009. 380-387. SZABO, A.; OSTLUND, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. [S.l.]: Dover, 1962. TEIXEIRA, E. C.; FELTES, S.; SANTANA, E. R. R. Estudo Das Emiss?es De Fontes M?veis Na Regi?o. Qu?mica Nova, S?o Paulo, Vol. 31, 2008. 244. TRZESNIAK, D. R. F. M?todos te?ricos em qu?mica molecular. USP. S?o Paulo, p. 31-55. 2002. U.S. DEPARTAMENT OF ENERGY. Alternative Fuels Data Center. Energy Efficiency & Renewable Energy, 2017. Disponivel em: <https://www.afdc.energy.gov/fuels/hydrogen_production.html>. Acesso em: 13 maio 2018. VESSER, G.; LIANG, S. Nanocatalysts for the Water-Gas-Shift Reaction. Nanomaterials and Energy, Pittsburg, EUA, 04 Outubro 2011. 117-135. WALZ, F. The Verwey transition - a topical review. Journal of Physics: Condens. Matter, Sttutgart, Alemanha, 15 Mar?o 2002. 1115-1125. WOODCOCK, C. R.; MASON, J. S. Bulk solids handling: an introduction to the practice and technology. 1?. ed. Nova York, EUA: Blackie & Son Ltd, v. ?nico, 1987. WORLD COAL ASSOCIATION. World Coal. World Coal, 2017. Disponivel em: <https://www.worldcoal.org/coal/coal-mining>. Acesso em: 06 maio 2018. WUA, W.; LIOUB, Y.-C.; YANGA, H.-T. Design and evaluation of a heat-integrated hydrogen production system by reforming methane and carbon dioxide. Journal of the Taiwan Institute of Chemical Engineers, Dulion, Taiwan, 11 maio 2013. 929-935. ZBORIL, R.; MASHLAN, M.; PETRIDIS, D. Iron(III) Oxides from Thermal ProcessesSynthesis, Structural and Magnetic Properties, M?ssbauer Spectroscopy Characterization, and Applications. Chemistry of Materials, Olomuc, Rep?blica Checa, 28 Fevereiro 2002. 969?982.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Qu?mica
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/5428/4/2019+-+Felipe+Marinho+Fernandes.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/5428/3/2019+-+Felipe+Marinho+Fernandes.pdf.txt
http://localhost:8080/tede/bitstream/jspui/5428/2/2019+-+Felipe+Marinho+Fernandes.pdf
http://localhost:8080/tede/bitstream/jspui/5428/1/license.txt
bitstream.checksum.fl_str_mv 8c1280dca4077478b5fad29883580c72
8dff2af7fde0bb9e66d46be686a1616c
c2cedaf8262de92c0ac4704a5c6a4a08
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220359747928064