Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Javaroni, F?bio lattes
Orientador(a): Silva, Clarissa Oliveira da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Qu?mica
Departamento: Instituto de Ci?ncias Exatas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/tede/17
Resumo: Knowing that the conformation of disaccharide molecules is defined by the energy of rotation of the glycosidic linkage defined by dihedral angles ? (phi) and ? (psi) (and ?(omega), when it exists), our work has consisted by the definition of a set of values of angles that allow to the isomaltose molecule to reach stable conformations of low energy, in gas phase and aqueous solution. To reach this objective, we have performed scannings on the dihedral angles ? (phi) and ? (psi) of the molecule, with the aid of an ab initio computational theoretical method, based only on the laws of the quantum mechanics. Although it takes much computational times, this method describes quantitatively properties of the molecule that depend on its electronic distribution, such as the exo-anomeric effect and hydrogen bonds. The available experimental data in the literature for isomaltose are very scarce and the theoretical data are divergent in its results, thus justifying again the choice of this method. From the calculations performed, conformational maps (graphics that represent the energy values as a function of the respective values of each angle ?, ? e ? exactly assumes in one given conformation) were built. From the conformational maps, regions of minimum energy were identified. Solvation does not create new regions of stability. For the final structures, calculations of vibrational frequency were carried out, to properly characterize these structures as energy minimum and to make possible the incorporation of thermal and entropic corrections. All the calculations were carried out at HF level with a 6-31G (d, p) basis set, a description suited for carbohydrates. The calculations in solution were carried out with the Polarizable Continuum Model (PCM). A total of 18 regions of stability were obtained, making of isomaltose the molecule with the highest number of stable conformations of low energy among all the existing disaccharides with two glucose units, proving that the rotation of its glycosidic linkage have a degree of freedom with a low barrier, since this peculiar linkage ?(1,6) allows a larger distance between the two glycosidic units. This higher flexibility does not have a direct association with the high solubility (solvation degree) of the molecule. For a more direct relationship with the solvation degree, other parameters were investigated in this work, as, for example, the dipole moment of the molecule.
id UFRRJ-1_ce8e449258bf0f3f0ccaf53c13f9c42f
oai_identifier_str oai:localhost:tede/17
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Silva, Clarissa Oliveira da014.109.957-71http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797726A0991.422.447-49http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4282793J4Javaroni, F?bio2016-04-26T13:52:01Z2008-04-182007-03-09JAVARONI, F?bio. Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose. 2007. 61 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica - RJ, 2007.https://tede.ufrrj.br/jspui/handle/tede/17Knowing that the conformation of disaccharide molecules is defined by the energy of rotation of the glycosidic linkage defined by dihedral angles ? (phi) and ? (psi) (and ?(omega), when it exists), our work has consisted by the definition of a set of values of angles that allow to the isomaltose molecule to reach stable conformations of low energy, in gas phase and aqueous solution. To reach this objective, we have performed scannings on the dihedral angles ? (phi) and ? (psi) of the molecule, with the aid of an ab initio computational theoretical method, based only on the laws of the quantum mechanics. Although it takes much computational times, this method describes quantitatively properties of the molecule that depend on its electronic distribution, such as the exo-anomeric effect and hydrogen bonds. The available experimental data in the literature for isomaltose are very scarce and the theoretical data are divergent in its results, thus justifying again the choice of this method. From the calculations performed, conformational maps (graphics that represent the energy values as a function of the respective values of each angle ?, ? e ? exactly assumes in one given conformation) were built. From the conformational maps, regions of minimum energy were identified. Solvation does not create new regions of stability. For the final structures, calculations of vibrational frequency were carried out, to properly characterize these structures as energy minimum and to make possible the incorporation of thermal and entropic corrections. All the calculations were carried out at HF level with a 6-31G (d, p) basis set, a description suited for carbohydrates. The calculations in solution were carried out with the Polarizable Continuum Model (PCM). A total of 18 regions of stability were obtained, making of isomaltose the molecule with the highest number of stable conformations of low energy among all the existing disaccharides with two glucose units, proving that the rotation of its glycosidic linkage have a degree of freedom with a low barrier, since this peculiar linkage ?(1,6) allows a larger distance between the two glycosidic units. This higher flexibility does not have a direct association with the high solubility (solvation degree) of the molecule. For a more direct relationship with the solvation degree, other parameters were investigated in this work, as, for example, the dipole moment of the molecule.Sabendo-se que a conforma??o das mol?culas de dissacar?deos ? definida pela energia de rota??o da liga??o glicos?dica definida pelos ?ngulos diedros ? (phi) e ? (psi) (e ?(?mega), quando este existir), o nosso trabalho consistiu na defini??o de um conjunto de valores de ?ngulos que permitem ? mol?cula da isomaltose alcan?ar conforma??es est?veis, em fase gasosa e em solu??o aquosa. Para alcan?armos este objetivo, fizemos uma varredura nos ?ngulos diedros ? (phi), ? (psi) da mol?cula, com o aux?lio de um m?todo te?rico computacional ab initio, baseando-nos apenas nas leis da mec?nica qu?ntica. Apesar de envolver um elevado tempo computacional, este m?todo descreve quantitativamente propriedades da mol?cula que dependem da sua distribui??o eletr?nica, tais como o efeito exo-anom?rico e as liga??es hidrog?nio. Os dados experimentais dispon?veis na literatura para a isomaltose s?o muito escassos e os dados te?ricos bastante divergentes em seus resultados, o que novamente justifica a escolha deste m?todo. De posse dos valores de energia obtidos pela varredura nos ?ngulos glicos?dicos, foram constru?dos mapas conformacionais (gr?ficos que representam os valores de energia em fun??o do respectivo valor que cada ?ngulo ?, ? e ? assume numa dada conforma??o). A partir dos mapas conformacionais, foram identificadas as respectivas regi?es de energia m?nima, representadas por conf?rmeros cujas geometrias foram selecionadas. Constatou-se tamb?m que a solvata??o destas estruturas n?o cria novas regi?es de estabilidade. Para estas estruturas finais foram realizados c?lculos de frequ?ncia vibracional, tanto para propriamente caracterizar estas estruturas como m?nimos de energia como para possibilitar a incorpora??o das corre??es t?rmicas e entr?picas. Todos os c?lculos foram realizados em n?vel HF com uma base do tipo 6-31G(d,p), uma descri??o adequada para a investiga??o da geometria de carboidratos. Os c?lculos em solu??o foram realizados com o modelo de solvata??o Polarizable Continuum Model (PCM). Foram obtidas um total de 18 regi?es de estabilidade, fazendo da isomaltose a mol?cula com o maior n?mero de conf?rmeros est?veis de baixa energia dentre todos os dissacar?deos formados por duas unidades de glicose, comprovando que a rota??o de sua liga??o glicos?dica possui um elevado grau de liberdade, devido ao fato de que esta peculiar liga??o ?(1,6) permite uma maior dist?ncia entre as duas unidades glicos?dicas. Esta maior flexibilidade, n?o teria uma associa??o direta com a maior solubilidade (grau de solvata??o) da mol?cula. Para uma rela??o mais direta com o grau de solvata??o, outros par?metros foram investigados neste trabalho, como, por exemplo, o momento de dipolo da mol?cula.CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/55943/2007%20-%20F%c3%a1bio%20Javaroni.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Qu?micaUFRRJBrasilInstituto de Ci?ncias Exatasisomaltosemapa conformacional?ngulo diedro glicos?dicoconformational mapglycosidic dihedral angleQu?micaDetermina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicoseDetermination of the most stable conformations of isomaltose ?-Dglucopyranosyl-(1?6)-D-glucoseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2007 - F?bio Javaroni.pdf.jpg2007 - F?bio Javaroni.pdf.jpgimage/jpeg3649http://localhost:8080/tede/bitstream/tede/17/18/2007+-+F%C3%A1bio+Javaroni.pdf.jpg22e8cc8e2dcb9470a79ed8d5fb25fa02MD518TEXT2007 - F?bio Javaroni.pdf.txt2007 - F?bio Javaroni.pdf.txttext/plain81721http://localhost:8080/tede/bitstream/tede/17/17/2007+-+F%C3%A1bio+Javaroni.pdf.txt72af55b066839984ca4174582722c60fMD517ORIGINAL2007 - F?bio Javaroni.pdf2007 - F?bio Javaroni.pdfapplication/pdf4613349http://localhost:8080/tede/bitstream/tede/17/20/2007+-+F%C3%A1bio+Javaroni.pdf1b427053b63fd02555d90834d37f0d8aMD520tede/172023-08-27 22:54:46.286oai:localhost:tede/17Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-08-28T01:54:46Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose
dc.title.alternative.eng.fl_str_mv Determination of the most stable conformations of isomaltose ?-Dglucopyranosyl-(1?6)-D-glucose
title Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose
spellingShingle Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose
Javaroni, F?bio
isomaltose
mapa conformacional
?ngulo diedro glicos?dico
conformational map
glycosidic dihedral angle
Qu?mica
title_short Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose
title_full Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose
title_fullStr Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose
title_full_unstemmed Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose
title_sort Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose
author Javaroni, F?bio
author_facet Javaroni, F?bio
author_role author
dc.contributor.advisor1.fl_str_mv Silva, Clarissa Oliveira da
dc.contributor.advisor1ID.fl_str_mv 014.109.957-71
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797726A0
dc.contributor.authorID.fl_str_mv 991.422.447-49
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4282793J4
dc.contributor.author.fl_str_mv Javaroni, F?bio
contributor_str_mv Silva, Clarissa Oliveira da
dc.subject.por.fl_str_mv isomaltose
mapa conformacional
?ngulo diedro glicos?dico
topic isomaltose
mapa conformacional
?ngulo diedro glicos?dico
conformational map
glycosidic dihedral angle
Qu?mica
dc.subject.eng.fl_str_mv conformational map
glycosidic dihedral angle
dc.subject.cnpq.fl_str_mv Qu?mica
description Knowing that the conformation of disaccharide molecules is defined by the energy of rotation of the glycosidic linkage defined by dihedral angles ? (phi) and ? (psi) (and ?(omega), when it exists), our work has consisted by the definition of a set of values of angles that allow to the isomaltose molecule to reach stable conformations of low energy, in gas phase and aqueous solution. To reach this objective, we have performed scannings on the dihedral angles ? (phi) and ? (psi) of the molecule, with the aid of an ab initio computational theoretical method, based only on the laws of the quantum mechanics. Although it takes much computational times, this method describes quantitatively properties of the molecule that depend on its electronic distribution, such as the exo-anomeric effect and hydrogen bonds. The available experimental data in the literature for isomaltose are very scarce and the theoretical data are divergent in its results, thus justifying again the choice of this method. From the calculations performed, conformational maps (graphics that represent the energy values as a function of the respective values of each angle ?, ? e ? exactly assumes in one given conformation) were built. From the conformational maps, regions of minimum energy were identified. Solvation does not create new regions of stability. For the final structures, calculations of vibrational frequency were carried out, to properly characterize these structures as energy minimum and to make possible the incorporation of thermal and entropic corrections. All the calculations were carried out at HF level with a 6-31G (d, p) basis set, a description suited for carbohydrates. The calculations in solution were carried out with the Polarizable Continuum Model (PCM). A total of 18 regions of stability were obtained, making of isomaltose the molecule with the highest number of stable conformations of low energy among all the existing disaccharides with two glucose units, proving that the rotation of its glycosidic linkage have a degree of freedom with a low barrier, since this peculiar linkage ?(1,6) allows a larger distance between the two glycosidic units. This higher flexibility does not have a direct association with the high solubility (solvation degree) of the molecule. For a more direct relationship with the solvation degree, other parameters were investigated in this work, as, for example, the dipole moment of the molecule.
publishDate 2007
dc.date.issued.fl_str_mv 2007-03-09
dc.date.available.fl_str_mv 2008-04-18
dc.date.accessioned.fl_str_mv 2016-04-26T13:52:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JAVARONI, F?bio. Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose. 2007. 61 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica - RJ, 2007.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/tede/17
identifier_str_mv JAVARONI, F?bio. Determina??o das conforma??es mais est?veis da isomaltose ?-Dglicopiranosil-(1?6)-D-glicose. 2007. 61 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica - RJ, 2007.
url https://tede.ufrrj.br/jspui/handle/tede/17
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ci?ncias Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/17/18/2007+-+F%C3%A1bio+Javaroni.pdf.jpg
http://localhost:8080/tede/bitstream/tede/17/17/2007+-+F%C3%A1bio+Javaroni.pdf.txt
http://localhost:8080/tede/bitstream/tede/17/20/2007+-+F%C3%A1bio+Javaroni.pdf
bitstream.checksum.fl_str_mv 22e8cc8e2dcb9470a79ed8d5fb25fa02
72af55b066839984ca4174582722c60f
1b427053b63fd02555d90834d37f0d8a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220252285665280