Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, Daniel Rosa da lattes
Orientador(a): Sant?Anna, Carlos Mauricio Rabello de lattes
Banca de defesa: Albuquerque, Magaly Gir?o, Amorim, Mauro Barbosa de, Lima, Marco Edilson Ferreira, Silva, Clarissa Oliveira da, Nascimento Junior, Nailton Monteiro do
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Qu?mica
Departamento: Instituto de Ci?ncias Exatas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/3110
Resumo: Acetylcholinesterase (AChE) is an enzyme essential for the central and peripheral cholinergic transmission. AChE inhibitors can be applied as medicines and they are the principal compounds used nowadays for the treatment of Alzheimer?s disease (AD). AD is a neurodegenerative disorder, which presents an important socio-economic impact, responsible for 50-60% of the total number of dementia cases among people above 65-years old. Although irreversible AChE inhibitors are not commonly used as medicines for humans, their use is common for the control of disease vectors, especially diseases transmitted by mosquitos, such as dengue fever. The World Health Organization (WHO) estimates that 50-100 million people are infected by the dengue virus annually in 100 countries. The objective of the present work is the development of empirical models for prediction of the activities of synthetic compounds as inhibitors of AChE. The models were based on activity data for the inhibition of Torpedo californica AChE by mesoionic compounds and harmane derivatives, synthesized by research groups from UFRRJ, and bivalent ?-carbolines, obtained from the literature. The same procedure was applied to the development of an empirical model for the prediction of bivalent ?-carbolines inhibition data of Aedes aegypti AChE. The complete procedure involved the use of the molecular docking procedure for the generation of ligands/enzyme complexes, followed by calculations of the interaction enthalpies in the gas phase by semi-empirical methods. For the study with the Aedes aegypti AChE, it was necessary the previous construction of a comparative model of the enzyme?s 3D structure. The interaction enthalpy data were combined with data from the ligands solvation free energies or solvation enthalpies together with estimative data of the ligands entropic losses associated to the interaction with the enzyme in order to propose empirical equations for prediction of activities data through regressive fit by multiple correlation with available activity data. For the T. californica AChE, it was possible to develop three equations with good correlations for the three classes of compounds evaluated, which could be successfully applied for the prediction of inhibition data from calculated energy descriptors. Based on the analysis of the obtained structures for the mesoionic compounds and the corresponding empirical equation, we proposed the structures of xix two prototypes and determined their predicted activities. Both molecules were predicted as more active AChE inhibitors when compared to the compounds from which the new compounds were designed. For the Ae. aegypti AChE, it was possible to find an equation for the calculation of ?-carbolines activities, which presented a good correlation with the experimental data. It was also proposed a prototype for the ?-carbolines, based on the conformational restriction concept. Its AChE inhibition activity was calculated and the molecule was predicted as more active the compound from which the new compounds was designed.
id UFRRJ-1_e2cc8bae20604ed780ef8ff9973af87a
oai_identifier_str oai:localhost:jspui/3110
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Sant?Anna, Carlos Mauricio Rabello de82723222772http://lattes.cnpq.br/2087099684752643Albuquerque, Magaly Gir?oAmorim, Mauro Barbosa deLima, Marco Edilson FerreiraSilva, Clarissa Oliveira daNascimento Junior, Nailton Monteiro do09618394735http://lattes.cnpq.br/1777801134014169Silva, Daniel Rosa da2019-11-25T13:49:16Z2014-05-21SILVA, Daniel Rosa da. Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico. 2014. 113 f. Tese (Doutorado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica - RJ, 2014.https://tede.ufrrj.br/jspui/handle/jspui/3110Acetylcholinesterase (AChE) is an enzyme essential for the central and peripheral cholinergic transmission. AChE inhibitors can be applied as medicines and they are the principal compounds used nowadays for the treatment of Alzheimer?s disease (AD). AD is a neurodegenerative disorder, which presents an important socio-economic impact, responsible for 50-60% of the total number of dementia cases among people above 65-years old. Although irreversible AChE inhibitors are not commonly used as medicines for humans, their use is common for the control of disease vectors, especially diseases transmitted by mosquitos, such as dengue fever. The World Health Organization (WHO) estimates that 50-100 million people are infected by the dengue virus annually in 100 countries. The objective of the present work is the development of empirical models for prediction of the activities of synthetic compounds as inhibitors of AChE. The models were based on activity data for the inhibition of Torpedo californica AChE by mesoionic compounds and harmane derivatives, synthesized by research groups from UFRRJ, and bivalent ?-carbolines, obtained from the literature. The same procedure was applied to the development of an empirical model for the prediction of bivalent ?-carbolines inhibition data of Aedes aegypti AChE. The complete procedure involved the use of the molecular docking procedure for the generation of ligands/enzyme complexes, followed by calculations of the interaction enthalpies in the gas phase by semi-empirical methods. For the study with the Aedes aegypti AChE, it was necessary the previous construction of a comparative model of the enzyme?s 3D structure. The interaction enthalpy data were combined with data from the ligands solvation free energies or solvation enthalpies together with estimative data of the ligands entropic losses associated to the interaction with the enzyme in order to propose empirical equations for prediction of activities data through regressive fit by multiple correlation with available activity data. For the T. californica AChE, it was possible to develop three equations with good correlations for the three classes of compounds evaluated, which could be successfully applied for the prediction of inhibition data from calculated energy descriptors. Based on the analysis of the obtained structures for the mesoionic compounds and the corresponding empirical equation, we proposed the structures of xix two prototypes and determined their predicted activities. Both molecules were predicted as more active AChE inhibitors when compared to the compounds from which the new compounds were designed. For the Ae. aegypti AChE, it was possible to find an equation for the calculation of ?-carbolines activities, which presented a good correlation with the experimental data. It was also proposed a prototype for the ?-carbolines, based on the conformational restriction concept. Its AChE inhibition activity was calculated and the molecule was predicted as more active the compound from which the new compounds was designed.A acetilcolinesterase (AChE) desempenha pap?is importantes na neurotransmiss?o colinerg?tica central e perif?rica. Os inibidores da AChE (IAChE) t?m aplica??o como f?rmacos e s?o as principais subst?ncias hoje licenciadas para o tratamento espec?fico da doen?a de Alzheimer (DA). A DA ? uma desordem neurodegenerativa, de grande impacto s?cio-econ?mico, respons?vel por 50-60% do n?mero total de casos de dem?ncia entre pessoas acima de 65 anos. Embora IAChE irrevers?veis em geral n?o sejam usados com fins medicinais em seres humanos, ? comum o seu uso no controle de vetores de doen?as, especialmente as transmitidas por mosquitos, com ? o caso da dengue. A dengue ? um dos principais problemas de sa?de p?blica no mundo. A Organiza??o Mundial da Sa?de (OMS) estima que 50-100 milh?es de pessoas se infectem anualmente, em 100 pa?ses. O objetivo deste estudo foi o desenvolvimento de modelos emp?ricos de previs?o da atividade de s?ries de compostos sint?ticos na inibi??o da AChE. Para isso foram utilizados dados de atividade de inibi??o da AChE de Torpedo californica por compostos mesoi?nicos e derivados da harmana, sintetizados por grupos de pesquisa da UFRRJ, e por ?-carbolinas bivalentes, obtidos da literatura. O mesmo procedimento foi aplicado para o desenvolvimento de um modelo emp?rico aplic?vel para a previs?o da atividade de ?-carbolinas bivalentes na inibi??o da AChE de Aedes aegypti. O procedimento geral envolveu o uso de m?todo de docking molecular para a gera??o das estruturas dos complexos entre os ligantes e as enzimas, seguido de c?lculos de entalpias de intera??o em fase gasosa por m?todos qu?nticos semi-emp?ricos. Para a AChE de Aedes aegypti foi necess?ria a constru??o pr?via de um modelo comparativo da estrutura 3D desta enzima. Os dados de entalpia de intera??o foram combinados com determina??es da energia livre ou da entalpia de solvata??o dos ligantes e com estimativas das perdas entr?picas dos ligantes no processo de intera??o com a enzima para a proposi??o de equa??es emp?ricas de previs?o das atividades por ajuste por correla??o m?ltipla aos dados experimentais dispon?veis. Em rela??o ? AChE de T. californica, foi poss?vel encontrar tr?s equa??es com boas correla??es uma para cada classe de compostos, que puderam de forma adequada determinar a inibi??o atrav?s dos descritores de energia. A partir da an?lise das estruturas dos complexos obtidos com os mesoi?nicos e das equa??es de previs?o de xvii atividade correspondentes, foram propostos dois prot?tipos neste trabalho e suas atividades foram previstas. As duas mol?culas foram previstas como mais ativas que as mol?culas anteriores (que deram origem aos prot?tipos), indicando que as modifica??es foram adequadas. Para a AChE de Ae. aegypti tamb?m foi poss?vel encontrar uma equa??o com uma boa correla??o com as atividades das ?-carbolinas bivalentes, que pode de forma adequada determinar a inibi??o atrav?s dos descritores de energia. Foi proposto um prot?tipo da ?-carbolina bivalente neste trabalho, aplicando-se o conceito de restri??o conformacional, e sua atividade foi prevista. A mol?cula proposta foi prevista como mais ativa que a mol?cula que deu origem ao prot?tipo.Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-11-25T13:49:15Z No. of bitstreams: 1 2014 - Daniel Rosa da Silva.pdf: 5145444 bytes, checksum: 79c4a13e9a737ac69fe6ceb4381c234e (MD5)Made available in DSpace on 2019-11-25T13:49:16Z (GMT). No. of bitstreams: 1 2014 - Daniel Rosa da Silva.pdf: 5145444 bytes, checksum: 79c4a13e9a737ac69fe6ceb4381c234e (MD5) Previous issue date: 2014-05-21Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPESapplication/pdfhttps://tede.ufrrj.br/retrieve/11517/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpghttps://tede.ufrrj.br/retrieve/16964/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpghttps://tede.ufrrj.br/retrieve/23286/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpghttps://tede.ufrrj.br/retrieve/29664/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpghttps://tede.ufrrj.br/retrieve/36038/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpghttps://tede.ufrrj.br/retrieve/42434/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpghttps://tede.ufrrj.br/retrieve/48812/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpghttps://tede.ufrrj.br/retrieve/55264/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Qu?micaUFRRJBrasilInstituto de Ci?ncias ExatasAJAY; MURCKO, M. A. Computational Methods to Predict Binding Free Energy in Ligand-Receptor Complexes. Journal of Medicinal Chemistry. v. 38, pp.4953-4967, 1995. ATKINS, P. W. & PAULA, J. F?sico-Qu?mica. 7?ed, Vol. 2. Rio de Janeiro: editor, LTC 2004, 620p. ARNOLD, K. The Swiss-model workspace: a web-based environment for protein structure homology modelling. Struct. Bioinf., v.22, pp.195-201, 2006. BARON, R.L. Carbamate Insecticides. In: Hayes, W.R., Laws, E.R.. Handbook of Pesticide Toxicology. San Diego, California, USA. Academic Press, Inc. v. 3, pp.1125-1190, 1991. BENKERT, P.; BIASINI, M.; SCHWEDER, T. ?Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics., v. 27, pp. 343-350, 2011. BERG, J. M.; TYMOCZKO, J. L.; STRYVER, L. Bioqu?mica. 6? Edi??o. Guanabara Koogan, 2008. ISBN: 8527713691. BIRKS, J.; HARVEY, R. J. Donepezil for dementia due to Alzheimer's disease. Cochrane Database of Systematic Reviews. v. 1, pp. 1190, 2006. BORDOLI, L. Protein structure homology modeling using Swiss-model workspace. Nat. Protoc. v. 4, pp.1-13, 2009. BROOIJMENS N. & KUNTZ I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., v. 32, pp.335-373, 2003. BROOKS, C. L. et al. A theoretical perspective of dynamics, structure, and thermodynamics. Advances in chemical physics; John Wiley: New York, 1988; v. LXXI. CACABELOS, R.; TAKEDA, M.; WINBLAD, B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimers disease. International Journal of Geriatric Psychiatry. v. 14, pp. 3-47, 1999. CAMPOS, L.S. Entender a Bioqu?mica. 2? Edi??o. Lisboa: Escolar Editora, 1999. ISBN: 972-592-108-9. 106 CARAMELLI, P.; CHAVES, M. L. F.; Engelhardt E, et al. Effects of galantamine on attention and memory in Alzheimers disease measured by computerized neuropsychological tests: results of the Brasilian Multi-Center galantamine study (GALBRA-01). Arquivos de Neuro-Psiquiatria. v. 62, pp. 379-384, 2004. CARLIER, P. R.; HAN, Y. F.; CHOW, E. S.; LI, C. P.; WANG, H.; LIEU, T. X.; WONG, H. S.; PANG, Y. P. Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis. Bioorg. Med. Chem. v. 7, pp. 351-357, 1999. CARLSON, H. A. Protein flexibility and drug desing: how to hit a moving target. Corrent Opinion in Chemical Biology. vol. 6. pp. 447-452, 2002. CARLSON, H. A. & McCAMMON, J. A. Accommodating protein flexibility in computacional drug desing. Molecular Pharmacology. v. 57. pp. 213-218, 2000. CASIDA, J. E. e QUISTAD, G. B. Serine hydrolase targets of organophosphorus toxicants. Chemico-Biological Interactions, U.S.A, v. 157?158, pp. 277?283, 2005. CASTRO, A. T. Estudo por modelagem molecular da reativa??o da acetilcolinesterase inibida por agentes qu?micos neurol?gicos. 121 f. Disserta??o ( mestrado em ?rea envolvida ) ? IME, Rio de Janeiro, 2002. CHOTIA, C. & LESK, A. M. The relation between the divergence of sequence and structure in proteins. The EMBO Journal. v. 5, pp. 823-826, 1986. COSTA FILHO, P. A. da & POPPI, R. J. Algoritmo gen?tico em qu?mica. Qu?mica Nova. v. 3, pp. 405-411, 1999. CYGLER, M.; SCHRAG, I.D.; SUSSMAN, J.L.; HAREL, M., SILMAN, I.; GENTRY, M.K.; DOSTOR, B.P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science. v. 2, pp. 366-382, 1993. Dewar, M. J. S.; Thiel, W. Ground state of molecules. 38. The MNDO Method. Approximations and Parameters. J. Am. Chemical Soc. v. 99, pp. 4899-4907, 1997-a. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. AM1: A new general purpose quantum mechanical model. J. Am Chem Soc. v. 107, pp. 3902 ? 3909, 1985. DEWAR, M. J. S.; JIE, C. & YU, J. SAM1; The first of a new series of general purpose quantum mechanical molecular models. Tetrahedron. v. 49, pp. 5003-5038, 1993. DOWNEY, D. Pharmacologic management of Alzheimer Diseases. Journal of Neuroscience Nursing. v. 40, n.1, pp. 55-59, 2008. ELDRIDGE, M. D.; MURRAY, C. W. J.; AUTON, T. R.; PAOLINI, G.V. & MEL, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function 107 to estimate the binding affinity of ligands in receptor complexos. Journal of computer-aided molecular design. v. 11, pp. 425-445, 1997. ELHANANY, E.; ORDENTLICH, A.; DGANY, O.; KAPLAN, D.; SEGALL,Y.; BARAK, R.; VELLAN, B.; SHAFFERMAN, A. Resolving pathways of interaction of covalent inhibitors with the active site of acetylcholinesterases: MALDI-TOF/MS analysis of various nerve agent phosphyl adducts. Chemical Research in Toxicology. v. 14, pp. 912-918, 2001. FAN, P.; HAY, A.; MARSTON, A.; HOSTETTMANN, K., Acetycholinesterase-Inhibitory Acivity of Linarin from Buddleja davidii, Structure-Activity Relationships of Related Flavonoids, and Chemical Investigation of Buddeja nitida. Pharmaceutical Biology. v. 46, pp. 596-601, 2008. FARLOW, M. R. Effective pharmacologic management of Alzheimer?s disease. American Journal of Medicine. v. 120, pp. 388-397, 2007. FORD, M. Insecticides and Pesticides. In Viccellio, P. Handbook of Medical Toxicology, 1a ed. USA. Little, Brown and Company. p. 303-314, 1993. FORLENZA, O.V. Tratamento farmacol?gico da doen?a de alzheimer. Rev. Psiq. Clin. v. 32 , pp. 137-148, 2005. GIACOBINE, E. In: Giacobin, E. (ed.), Cholinesterases and cholinesterase inhibitors. pp. 181-226, 2000. GOHLKE, H.; & KEBLE, G. Approaches to description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angewandte chemie International edition. v. 41, pp. 2644-2676, 2002. GOODFORD, P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. Journal of medicinal chemistry. v. 28, pp. 849-847, 1985. GOODMAN, J. L.; PAGEL, M. D. & STONE, M. J. Reletionships between favorable protein structure and dynamis from a database of NMR-derived backbone order parameters. Journal of molecular biology. v. 265, pp. 963-978, 2000. GREIG, N. H.; UTSUKI, T.; INGRAM, D. K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proceedings of the national academy of sciences of the united states of America. v. 102, pp. 17413-17418, 2005. GROOT, B. L.; GRUBMULLER, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GLPF. Science. v. 294, pp. 2353-2357, 2001. VAN GUNSTEREN, W.; BILLETER, S.; EISING, A.; HUNENBERG, P.; KRUGER, P.; MARK, A.; SCOTT, W.; TIRONI, I. Biomolecular simulayions: the cromos manual and user guide. VDF Hochschulverlag ETH, Zurich, 1994. 108 HAASS, C.; SCHLOSSMACHER, M. G.; HUNG, A. Y.; VIGO, C. P.; MELLON, A.;Ostaszewski, B. L.; Lieberburg, I.; Koo, E. H.; Schenk, D.; Teplow, D. B.; Selkoe, D. J. Amyloid ?-peptide is produced by cultured cells during normal metabolism. Nature. v. 359, pp. 322-325, 1992. HANSSON, T.; MARELIUS, J. & ?QVIST, J. Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design. v. 12, pp. 27?35, 1998. HALPERIN, I.; MA, B.; WOLISON, H.; NUSSINOV, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Protein: Structure, function and genetics. v. 47, pp. 409-443, 2002. HARDY, J.; ALLSOP, D. Amyloid deposition as the central event in the aetiology ofAlzheimer's disease. Trends in Pharmacological Sciences. v. 12, pp. 383-388, 1991. HAREL, M.; SCHALK, I.; EHRET-SABATIER, L.; BOUET, F.; GOELDNER, M.; HIRTH, C.; AXELSEN, P.; SILMAN, I.; SUSSMAN, J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl Acad. Sci. U.S.A. v. 90, p. 9031-9035, 1993. HARTMANN, J.; KIEWERT, C.; DUYSEN, E. G. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. Journal of Neurochemistry. v. 100, pp. 1421-1429, 2007. HEHRE, W.J.; JIANGUO, Y.; KLUNZINGER, P.E.; LIANG, L. A brief guide to molecular mechanism and quantum chemical calculations. Wavefunction, Inc Editora, LTC, 1998. JEYARATNAM, J.; MARONI, M. Organophosphorous Componds. Toxicology. v. 91, pp. 15-27, 1994. JENSEN, F. Introduction to computational chemistry. Chichester: John Wiley & Sons, pp. 429, 1999. Jones, G., Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. v. 254, pp. 43-53, 1995. Jones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. v. 267, pp. 727-748, 1997. JUNOR, C. V.; BOLZONI, V. S.; FUREAN, M.; FRANCO, C. A. M.; BARRETO, E. J. Qu?mica nova. v. 27, pp. 655-660, 2004. KATALINIC, M.; KUSAK, G.; DOMACINOVIC, J.; SINKO, G.; JELIC, D.; ANTOLOVIC, R.; DOVARIK, Z. Strutuctural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry. v. 45, pp. 186-192, 2010. KITCHEN, D. B.; DECORNEZ, H.; FURR, J. R.; BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews in drug discovery. v. 3, pp. 935-949, 2004. 109 KOLLMAN, P. Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. American Chemical Society. v. 93, pp. 2395-2417,1993. KUNTZ, I. D.; BLANEY, J. M.; OATLEY, S. J.; LANGRIDGE, R.; FERRIN, T. E. A geometic approach to macromolecule-ligand interactions. Journal of Molecular biology. v. 161, pp. 269-288, 1982. LEACH, A. R. Molecular Modeling Principles and Applications. 2. ed. Pearson Education, England, 2001. LEVIN, E. D., SIMON, B. B. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology. v. 138, pp. 217-230, 1998. LIMA, J.S.; PEREIRA, R.H.B. Intoxica??o por organofosforados: An?lise cr?tica e considera??es especiais. Rev. Bras. de Ter. Int. v. 8 , pp. 100-101, 1996. MACHEMER, L. H.; PICKEL, M. Carbamates insecticides. Toxicology. v. 91, pp. 29-36, 1994. MASSOULI?, J.; PEZZEMENTE, L.; BON, S.; KREJCI, S.; VALLETTE, F. M. Molecular and cellular biology of cholinesterases. Progress in Neurobiology. v. 41, pp. 31-91, 1993. MESULAM, M.M.; GUILLOZET, A.; SHAW, P. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. v. 110, pp. 627-639, 2002. McCONKEY, B. J.; SOBOLEV, V.; EDELMAN, M. The performance or corrent methods in ligand-protein docking. Corrent science. v. 83, pp.845-856, 2002. MIDIO, A. F.; SILVA, E.S. Inseticidas-Acaricidas ? Organofosforados e Carbamatos. S?o Paulo, Ed. Roca Ltda, 1995. MILLARD, C. B. and BROOMFIELD, C. A. A Computer Model of Glycosylated Human Butyrylcholinesterase. Biochemical and Biophysical Research Communications. v. 189, pp. 1280-1286, 1992. MUDHER, A.; LOVESTONE, S. Alzheimer?s disease ? do tauists and baptists finally shake hands? Trends in Neurosciences. v. 25, pp. 22-25, 2002. NACHMANSOHN, D.; ROTHENBERG, M. A. Studies on cholinesterase .1. On thespecificity of the enzyme in nerve tissue. Journal of Biological Chemistry. v. 158, pp. 653-666, 1945. NELSON, D. L.; COX, M. M. ; Lehninger Princ?pios de Bioqu?mica. 3? Edi??o. Editora Ltda, Brasil. 2002. NOREL, R. WOLFSON, H.; NUSSINOV, R. Small molecular recognition: Solid angles surface representation and shape complementarity combinatorial chemistry and high throughput screening. Bioorg. Med. Chem. v. 2, pp. 177-191, 1999. 110 OLIVEIRA, F. G. Molecular docking study and development of na empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorg. Med. Chem. v.14, pp.6001-6011, 2006. OLIVEIRA, F. G. Estudo do perfil de intera??o de fosfodiesterase 4 com seus inibidores. Disserta??o de mestrado, IQ/UFRJ, 2005. ORHAN, I.; KARTAL, M.; TOSUN, F.; SENER, B. Screening of Various Phenolic Acids and Flavonoid Derivatives for Their Anticholinesterase Potential. Zeitschrift f?r Naturforschung. v. 62, pp. 829-832, 2007. PANG, Y.-P.; KOZIKOWSKI, A. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. J. Computaided Mol. Des. v. 8, pp. 669-681, 1994. PANG, Y.-P.; QUIRAM, P.; JELACIC, T.; HONG, F.; BRIMIJOIN, S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. J. Biol. Chem. v. 271, pp. 23646-23649, 1996. PANG, Y. P.; KOLLMEYER, T. M. ; HONG, F. ; LEE, J-C.; MAMMOND, P. I.; HAUGALO, K. S.; BRIMJOIN, S. Rational design of alkylene-linked bispyridiniumalidoximes as improved acetylcholinesterase reactivators. Chemistry & Biology. v.10, pp. 491-502, 2003. PENG, L. F. Acetylcholinesterase inhibition by territrem B derivatives. Journal Natural Products. v. 58, pp. 857-862, 1995. PEOPLE, J. A.; SANTRY, D. P.; SEGAL, G. A. Approximate self-consistent molecular orbital theory. I. Invariant procedures. Journal of chemical physics. v. 43, pp. 129- 135, 1965. PEOPLE, J. A.; SEGAL, G. A. Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap. Journal of chemical physics. v. 43, pp. 136- 149, 1965. PIAZZI, L.; CAVALLI, A.; BELLUTI, F.; BISI, A.; GOBBI, S.; BARTOLINI, M.; ANDRISANO, V.; RACANATINI, M.; RAMPA, A. Extensive SAR and omputational Studies of 3-{4-[(Benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2H-2-hromenone (AP2238) Derivatives. Journal of Medicinal Chemistry. v. 50, pp. 4250-4254, 2007. Pontes, R. J. S.; Regazzi, A. C.F.; Lima, J.W.O.; Kerr-Pontes, L.R.S. Efeito residual de presenta??es comerciais dos larvicidas temefos e Bacillus thuringiensis israelensis sobre larvas de Aedes aegypti em recipientes com renova??o de ?gua. Revista da Sociedade Brasileira de Medicina Tropical. v. 38, pp. 316-321, 2005. Ramachandran, G. N.; Sasiskeharan, V.. Conformation of polypeptides and proteins. Advances in Protein Chemistry. v. 23, pp. 283-256, 1968. RAUX, B. In computational biochemistry and biophisics. Eds. Becker. New York, 2001. ROCHA, G. B. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Compt. Chem. v.27, pp.1101-1111, 2006. 111 ROGERS, S. L.; DOODY, R. S.; MOHS, R. C. Friedhoff LT and the Donepezil Study Group. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, doubleblind doubleblind, placebo-controlled study. Archives of Internal Medicine. v. 158, pp. 1021-1031, 1998. ROGERS, S.L.; Farlow M. R.; Mohs, R. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer?s disease. Neurology. v. 50, pp.136-145, 1998. ROOK, Y.; WINKELER, T.; SCHMIDTKE, K.; GAUBE, F.; SCHEPMANN, F.; WUNSCH, B.; HEILMANN, J.; LEHMANN, J. Bivalent ?-carbolines as potencial multitarget Anti-Alzeimer agents. J. medicinal chemistry. v. 53, pp. 3611-3617, 2010. ROST, B. Twilight zone of protein sequence alignments. Protein engineering. v. 12, pp. 85- 94, 1999. Rydberg, E.H.; Brummstein, B.; Greenblatt, H.M.;Wong, D.M.; Shaya, D.; Williams, L.D.; Carlier, P.R.; Pang, Y-P.; Silman, I.; Sussman, J.L.Complexes of Alkylene-Linked Tacrine Dimers with Torpedo californica Acetylcholinesterase: Binding of Bis(5)-tacrineProduces a Dramatic Rearrangement in the Active-Site Gorge. Journal of medicinal Chemistry. v. 49 pp. 5491-5500, 2006. SANTOS FILHO, O. A. & ALENCASTRO, R. B. Modelagem de Prote?nas por Homologia. Quim. Nova. v. 26, pp. 253-259, 2003. SANTOS, V. M. R.; DONNICI, C. L.; DACOSTA, J.B.N.; CAXEIRO, J.M.R. Compostos Oroganofosforados Pentavalentes: Hist?rico, m?todos sint?ticos de prepara??o e aplica??es como inseticidas e agentes antitumorais. Qu?m. Nova. v.30, pp. 159-179, 2007. SAYLE, R. A.; Milner-White, E. J.. Rasmol: biomolecular graphics for all. Trends in biochemical sciences. v. 20, pp. 374-376, 1995. SCHWEDE, T. Swiss-model: an automated protein homology-modeling server. Nucleic Acids Research. v.31, pp.3381-3385, 2003. SEARLE, M. S. Partitioning of free energy contributions in the estimations of binding constants: residual motions and consequence for amide-amide hydrogen bond strengths. J. Am. Chem. Soc. v.114, pp.10697-10704, 1992. SEARLE, M. S. WILLIAMS D. H. The cost ofconformational order: entropy changes in molecular associations. J. Am. Chem. Soc. v.114, pp.10690-10697, 1992. SHIMIZU, K. Estudo do m?todo de equaliza??o da eletronegatividade no c?lculo de energias livres de solvata??o ? GBEEM ? ELR. 2005. Tese de doutorado ? USP, S?o Paulo, 2005. SILVA, G. R. Estudo da reativa??o da acetilcolinesterase inibida por organofosforados: an?lise conformacional da mol?cula de HI-6 e simula??o da rea??o de desfosforila??o. 2005. Disserta??o ( mestrado em ?rea envolvida ) ? IME, Rio de Janeiro, 2005. SOREQ, H.; BEN-AZIZ, R.; PRODY, C.A.; SEIDMAN, S.; GNATT, A.; NEVILLE, L.; LIEMAN-HURWITZ, J.; LEV-LEHMAN, E.; GINZBERG, D.; LIPIDOT-LIFSON, 112 Y. Molecular cloning and construction of the coding region for human acetylcholineterase reveals a G + C-rich attenuating structure. Proceedings of the Nacional Academy of Science. v. 87, pp. 9688-9692, 1990. SRINIVASAN, J. Continuum solvent studies of the stability of DNA, RNA, and hosphoramidate?DNAhelices. J. Am. Chem. Soc. v.120, pp.9401-9409, 1998. Stewart, J.J.P. Optimisation of parameters for semi-empirical methodsI. method. J Comput. Chem. v. 10, pp. 209-220, 1989-a. Stewart, J.J.P. Optimisation of parameters for semi-empirical methods II. Aplications. J Comput. Chem. v. 10, pp. 221-264, 1989-b. Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. v. 13, pp.1173?1213, 2007. SCHUMACHER, M.; CAMP, S.; MAULET, Y.; NEWTON, M.; MACPHEEQUIGLEY, K.; TAYLOR, S.S.; FRIEDMAN, T.; TAYLOR, P. Primary structures of Torpedo-californica acetylcholinesterase deduced from its cDNA sequence. Nature. Vol. 319, p. 407-409, 1986. Thiel, W.; Voityuk, A.A. Extension of MNDO to d orbitals: Parameters and results for Silicon. J Molecular Structure (Theochem). v. 313, pp. 141-154,1994. TOMASI, J.; MENNUCCI, B. & CAMMI, R. Quantum mechanical continuum solvation models. Chemical reviews. v 105, pp. 2999-3094, 2005. TORRES, J. M.; LIRA, A, F.; SILVA, D. R.; GUSSO, L. M.; SANT?ANNA, C. M. R.; KUMMERLE, A. E.; RUMJANEK, V. M. Structure insights into cholinesterases inhibition by harmane beta-carbolinium derivatives: A kinetics molecular modeling approach. Phytochemistry. v. 81, pp. 24-30, 2012. TORRES, J. M. Estudo cin?tico da atividade anticolinester?sica de derivados ?-carbon?licos do produto natural harmana. Disserta??o de mestrado UFRRJ, 2011. RUHLAR, D. G.; STORER, J. W.; GIESEN, D. J.; CRAMER, C. J. J. comput. Aided mol. Des. v. 9, pp. 87-110, 1995. VIEGAS, C. J.; DA SILVA, V. B.; FURLAN, M.; ALBERTO, C. M. F.; BARREIRO, E. J. Produtos Naturais como canditados a f?rmacos ?teis no tratamento do Mal de Alzheimer. Qu?mica Nova. v. 27, p. 655-660, 2004. VERDONK, M. L.; COLE, J. C.; HARTSHOM, M. J.; MURRAY, C. W. & TAYLOR, R. D. Improved protein-ligand docking using GOLD Portein. v. 52, pp. 609-623, 2003. WALDEMAR, G.; DUBOIS, B.; EMER, M. The Category Cued Recall test in very mild Alzheimer's disease: discriminative validity and correlation with semantic memory functions. European Journal of Neurology. v. 14, pp. 102-108, 2007. WANG, S.; MILNE, G. W. A.; NICKLAUS, M. C.; MARQUEZ, V. E.; LEE, J.; BLUMBERG, P. M. Protein kinase C modeling of the binding site and predisction of binding constants. Journal of medicinal chemistry. v. 37, pp. 1326-1338, 1994. 113 WILLIAMS, D. H. WESTWELL, M. S. Aspects of weak interactions. Chemical Society Reviews. v. 27, pp. 57-63, 1998.Semi-emp?rico, ,,AcetilcolinesteraseT. californicaA. aegyptiSemi-empirical, , ,.AcetylcholinesteraseT. californicaAe. aegyptiQu?micaDesenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?ricoDevelopment of empirical models to predict activity of inhibitors of the enzyme Torpedo californica acetylcholinesterase and Aedes aegypti using the semi-empirical methodinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2014 - Daniel Rosa da Silva.pdf.jpg2014 - Daniel Rosa da Silva.pdf.jpgimage/jpeg5215http://localhost:8080/tede/bitstream/jspui/3110/18/2014+-+Daniel+Rosa+da+Silva.pdf.jpg643947ce42e099bb8d0ef3d4ab3357f9MD518TEXT2014 - Daniel Rosa da Silva.pdf.txt2014 - Daniel Rosa da Silva.pdf.txttext/plain202506http://localhost:8080/tede/bitstream/jspui/3110/17/2014+-+Daniel+Rosa+da+Silva.pdf.txt2e156486a4ce7b0fb1c0dd9863580000MD517ORIGINAL2014 - Daniel Rosa da Silva.pdf2014 - Daniel Rosa da Silva.pdfapplication/pdf5145444http://localhost:8080/tede/bitstream/jspui/3110/2/2014+-+Daniel+Rosa+da+Silva.pdf79c4a13e9a737ac69fe6ceb4381c234eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/3110/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/31102022-04-18 23:32:51.245oai:localhost:jspui/3110Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-04-19T02:32:51Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico
dc.title.alternative.por.fl_str_mv Development of empirical models to predict activity of inhibitors of the enzyme Torpedo californica acetylcholinesterase and Aedes aegypti using the semi-empirical method
title Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico
spellingShingle Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico
Silva, Daniel Rosa da
Semi-emp?rico, ,,
Acetilcolinesterase
T. californica
A. aegypti
Semi-empirical, , ,.
Acetylcholinesterase
T. californica
Ae. aegypti
Qu?mica
title_short Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico
title_full Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico
title_fullStr Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico
title_full_unstemmed Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico
title_sort Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico
author Silva, Daniel Rosa da
author_facet Silva, Daniel Rosa da
author_role author
dc.contributor.advisor1.fl_str_mv Sant?Anna, Carlos Mauricio Rabello de
dc.contributor.advisor1ID.fl_str_mv 82723222772
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2087099684752643
dc.contributor.referee1.fl_str_mv Albuquerque, Magaly Gir?o
dc.contributor.referee2.fl_str_mv Amorim, Mauro Barbosa de
dc.contributor.referee3.fl_str_mv Lima, Marco Edilson Ferreira
dc.contributor.referee4.fl_str_mv Silva, Clarissa Oliveira da
dc.contributor.referee5.fl_str_mv Nascimento Junior, Nailton Monteiro do
dc.contributor.authorID.fl_str_mv 09618394735
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1777801134014169
dc.contributor.author.fl_str_mv Silva, Daniel Rosa da
contributor_str_mv Sant?Anna, Carlos Mauricio Rabello de
Albuquerque, Magaly Gir?o
Amorim, Mauro Barbosa de
Lima, Marco Edilson Ferreira
Silva, Clarissa Oliveira da
Nascimento Junior, Nailton Monteiro do
dc.subject.por.fl_str_mv Semi-emp?rico, ,,
Acetilcolinesterase
T. californica
A. aegypti
topic Semi-emp?rico, ,,
Acetilcolinesterase
T. californica
A. aegypti
Semi-empirical, , ,.
Acetylcholinesterase
T. californica
Ae. aegypti
Qu?mica
dc.subject.eng.fl_str_mv Semi-empirical, , ,.
Acetylcholinesterase
T. californica
Ae. aegypti
dc.subject.cnpq.fl_str_mv Qu?mica
description Acetylcholinesterase (AChE) is an enzyme essential for the central and peripheral cholinergic transmission. AChE inhibitors can be applied as medicines and they are the principal compounds used nowadays for the treatment of Alzheimer?s disease (AD). AD is a neurodegenerative disorder, which presents an important socio-economic impact, responsible for 50-60% of the total number of dementia cases among people above 65-years old. Although irreversible AChE inhibitors are not commonly used as medicines for humans, their use is common for the control of disease vectors, especially diseases transmitted by mosquitos, such as dengue fever. The World Health Organization (WHO) estimates that 50-100 million people are infected by the dengue virus annually in 100 countries. The objective of the present work is the development of empirical models for prediction of the activities of synthetic compounds as inhibitors of AChE. The models were based on activity data for the inhibition of Torpedo californica AChE by mesoionic compounds and harmane derivatives, synthesized by research groups from UFRRJ, and bivalent ?-carbolines, obtained from the literature. The same procedure was applied to the development of an empirical model for the prediction of bivalent ?-carbolines inhibition data of Aedes aegypti AChE. The complete procedure involved the use of the molecular docking procedure for the generation of ligands/enzyme complexes, followed by calculations of the interaction enthalpies in the gas phase by semi-empirical methods. For the study with the Aedes aegypti AChE, it was necessary the previous construction of a comparative model of the enzyme?s 3D structure. The interaction enthalpy data were combined with data from the ligands solvation free energies or solvation enthalpies together with estimative data of the ligands entropic losses associated to the interaction with the enzyme in order to propose empirical equations for prediction of activities data through regressive fit by multiple correlation with available activity data. For the T. californica AChE, it was possible to develop three equations with good correlations for the three classes of compounds evaluated, which could be successfully applied for the prediction of inhibition data from calculated energy descriptors. Based on the analysis of the obtained structures for the mesoionic compounds and the corresponding empirical equation, we proposed the structures of xix two prototypes and determined their predicted activities. Both molecules were predicted as more active AChE inhibitors when compared to the compounds from which the new compounds were designed. For the Ae. aegypti AChE, it was possible to find an equation for the calculation of ?-carbolines activities, which presented a good correlation with the experimental data. It was also proposed a prototype for the ?-carbolines, based on the conformational restriction concept. Its AChE inhibition activity was calculated and the molecule was predicted as more active the compound from which the new compounds was designed.
publishDate 2014
dc.date.issued.fl_str_mv 2014-05-21
dc.date.accessioned.fl_str_mv 2019-11-25T13:49:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Daniel Rosa da. Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico. 2014. 113 f. Tese (Doutorado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica - RJ, 2014.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/3110
identifier_str_mv SILVA, Daniel Rosa da. Desenvolvimento de modelos emp?ricos de predi??o da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o m?todo semi-emp?rico. 2014. 113 f. Tese (Doutorado em Qu?mica) - Instituto de Ci?ncias Exatas, Universidade Federal Rural do Rio de Janeiro, Serop?dica - RJ, 2014.
url https://tede.ufrrj.br/jspui/handle/jspui/3110
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AJAY; MURCKO, M. A. Computational Methods to Predict Binding Free Energy in Ligand-Receptor Complexes. Journal of Medicinal Chemistry. v. 38, pp.4953-4967, 1995. ATKINS, P. W. & PAULA, J. F?sico-Qu?mica. 7?ed, Vol. 2. Rio de Janeiro: editor, LTC 2004, 620p. ARNOLD, K. The Swiss-model workspace: a web-based environment for protein structure homology modelling. Struct. Bioinf., v.22, pp.195-201, 2006. BARON, R.L. Carbamate Insecticides. In: Hayes, W.R., Laws, E.R.. Handbook of Pesticide Toxicology. San Diego, California, USA. Academic Press, Inc. v. 3, pp.1125-1190, 1991. BENKERT, P.; BIASINI, M.; SCHWEDER, T. ?Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics., v. 27, pp. 343-350, 2011. BERG, J. M.; TYMOCZKO, J. L.; STRYVER, L. Bioqu?mica. 6? Edi??o. Guanabara Koogan, 2008. ISBN: 8527713691. BIRKS, J.; HARVEY, R. J. Donepezil for dementia due to Alzheimer's disease. Cochrane Database of Systematic Reviews. v. 1, pp. 1190, 2006. BORDOLI, L. Protein structure homology modeling using Swiss-model workspace. Nat. Protoc. v. 4, pp.1-13, 2009. BROOIJMENS N. & KUNTZ I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., v. 32, pp.335-373, 2003. BROOKS, C. L. et al. A theoretical perspective of dynamics, structure, and thermodynamics. Advances in chemical physics; John Wiley: New York, 1988; v. LXXI. CACABELOS, R.; TAKEDA, M.; WINBLAD, B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimers disease. International Journal of Geriatric Psychiatry. v. 14, pp. 3-47, 1999. CAMPOS, L.S. Entender a Bioqu?mica. 2? Edi??o. Lisboa: Escolar Editora, 1999. ISBN: 972-592-108-9. 106 CARAMELLI, P.; CHAVES, M. L. F.; Engelhardt E, et al. Effects of galantamine on attention and memory in Alzheimers disease measured by computerized neuropsychological tests: results of the Brasilian Multi-Center galantamine study (GALBRA-01). Arquivos de Neuro-Psiquiatria. v. 62, pp. 379-384, 2004. CARLIER, P. R.; HAN, Y. F.; CHOW, E. S.; LI, C. P.; WANG, H.; LIEU, T. X.; WONG, H. S.; PANG, Y. P. Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis. Bioorg. Med. Chem. v. 7, pp. 351-357, 1999. CARLSON, H. A. Protein flexibility and drug desing: how to hit a moving target. Corrent Opinion in Chemical Biology. vol. 6. pp. 447-452, 2002. CARLSON, H. A. & McCAMMON, J. A. Accommodating protein flexibility in computacional drug desing. Molecular Pharmacology. v. 57. pp. 213-218, 2000. CASIDA, J. E. e QUISTAD, G. B. Serine hydrolase targets of organophosphorus toxicants. Chemico-Biological Interactions, U.S.A, v. 157?158, pp. 277?283, 2005. CASTRO, A. T. Estudo por modelagem molecular da reativa??o da acetilcolinesterase inibida por agentes qu?micos neurol?gicos. 121 f. Disserta??o ( mestrado em ?rea envolvida ) ? IME, Rio de Janeiro, 2002. CHOTIA, C. & LESK, A. M. The relation between the divergence of sequence and structure in proteins. The EMBO Journal. v. 5, pp. 823-826, 1986. COSTA FILHO, P. A. da & POPPI, R. J. Algoritmo gen?tico em qu?mica. Qu?mica Nova. v. 3, pp. 405-411, 1999. CYGLER, M.; SCHRAG, I.D.; SUSSMAN, J.L.; HAREL, M., SILMAN, I.; GENTRY, M.K.; DOSTOR, B.P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science. v. 2, pp. 366-382, 1993. Dewar, M. J. S.; Thiel, W. Ground state of molecules. 38. The MNDO Method. Approximations and Parameters. J. Am. Chemical Soc. v. 99, pp. 4899-4907, 1997-a. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. AM1: A new general purpose quantum mechanical model. J. Am Chem Soc. v. 107, pp. 3902 ? 3909, 1985. DEWAR, M. J. S.; JIE, C. & YU, J. SAM1; The first of a new series of general purpose quantum mechanical molecular models. Tetrahedron. v. 49, pp. 5003-5038, 1993. DOWNEY, D. Pharmacologic management of Alzheimer Diseases. Journal of Neuroscience Nursing. v. 40, n.1, pp. 55-59, 2008. ELDRIDGE, M. D.; MURRAY, C. W. J.; AUTON, T. R.; PAOLINI, G.V. & MEL, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function 107 to estimate the binding affinity of ligands in receptor complexos. Journal of computer-aided molecular design. v. 11, pp. 425-445, 1997. ELHANANY, E.; ORDENTLICH, A.; DGANY, O.; KAPLAN, D.; SEGALL,Y.; BARAK, R.; VELLAN, B.; SHAFFERMAN, A. Resolving pathways of interaction of covalent inhibitors with the active site of acetylcholinesterases: MALDI-TOF/MS analysis of various nerve agent phosphyl adducts. Chemical Research in Toxicology. v. 14, pp. 912-918, 2001. FAN, P.; HAY, A.; MARSTON, A.; HOSTETTMANN, K., Acetycholinesterase-Inhibitory Acivity of Linarin from Buddleja davidii, Structure-Activity Relationships of Related Flavonoids, and Chemical Investigation of Buddeja nitida. Pharmaceutical Biology. v. 46, pp. 596-601, 2008. FARLOW, M. R. Effective pharmacologic management of Alzheimer?s disease. American Journal of Medicine. v. 120, pp. 388-397, 2007. FORD, M. Insecticides and Pesticides. In Viccellio, P. Handbook of Medical Toxicology, 1a ed. USA. Little, Brown and Company. p. 303-314, 1993. FORLENZA, O.V. Tratamento farmacol?gico da doen?a de alzheimer. Rev. Psiq. Clin. v. 32 , pp. 137-148, 2005. GIACOBINE, E. In: Giacobin, E. (ed.), Cholinesterases and cholinesterase inhibitors. pp. 181-226, 2000. GOHLKE, H.; & KEBLE, G. Approaches to description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angewandte chemie International edition. v. 41, pp. 2644-2676, 2002. GOODFORD, P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. Journal of medicinal chemistry. v. 28, pp. 849-847, 1985. GOODMAN, J. L.; PAGEL, M. D. & STONE, M. J. Reletionships between favorable protein structure and dynamis from a database of NMR-derived backbone order parameters. Journal of molecular biology. v. 265, pp. 963-978, 2000. GREIG, N. H.; UTSUKI, T.; INGRAM, D. K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proceedings of the national academy of sciences of the united states of America. v. 102, pp. 17413-17418, 2005. GROOT, B. L.; GRUBMULLER, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GLPF. Science. v. 294, pp. 2353-2357, 2001. VAN GUNSTEREN, W.; BILLETER, S.; EISING, A.; HUNENBERG, P.; KRUGER, P.; MARK, A.; SCOTT, W.; TIRONI, I. Biomolecular simulayions: the cromos manual and user guide. VDF Hochschulverlag ETH, Zurich, 1994. 108 HAASS, C.; SCHLOSSMACHER, M. G.; HUNG, A. Y.; VIGO, C. P.; MELLON, A.;Ostaszewski, B. L.; Lieberburg, I.; Koo, E. H.; Schenk, D.; Teplow, D. B.; Selkoe, D. J. Amyloid ?-peptide is produced by cultured cells during normal metabolism. Nature. v. 359, pp. 322-325, 1992. HANSSON, T.; MARELIUS, J. & ?QVIST, J. Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design. v. 12, pp. 27?35, 1998. HALPERIN, I.; MA, B.; WOLISON, H.; NUSSINOV, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Protein: Structure, function and genetics. v. 47, pp. 409-443, 2002. HARDY, J.; ALLSOP, D. Amyloid deposition as the central event in the aetiology ofAlzheimer's disease. Trends in Pharmacological Sciences. v. 12, pp. 383-388, 1991. HAREL, M.; SCHALK, I.; EHRET-SABATIER, L.; BOUET, F.; GOELDNER, M.; HIRTH, C.; AXELSEN, P.; SILMAN, I.; SUSSMAN, J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl Acad. Sci. U.S.A. v. 90, p. 9031-9035, 1993. HARTMANN, J.; KIEWERT, C.; DUYSEN, E. G. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. Journal of Neurochemistry. v. 100, pp. 1421-1429, 2007. HEHRE, W.J.; JIANGUO, Y.; KLUNZINGER, P.E.; LIANG, L. A brief guide to molecular mechanism and quantum chemical calculations. Wavefunction, Inc Editora, LTC, 1998. JEYARATNAM, J.; MARONI, M. Organophosphorous Componds. Toxicology. v. 91, pp. 15-27, 1994. JENSEN, F. Introduction to computational chemistry. Chichester: John Wiley & Sons, pp. 429, 1999. Jones, G., Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. v. 254, pp. 43-53, 1995. Jones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. v. 267, pp. 727-748, 1997. JUNOR, C. V.; BOLZONI, V. S.; FUREAN, M.; FRANCO, C. A. M.; BARRETO, E. J. Qu?mica nova. v. 27, pp. 655-660, 2004. KATALINIC, M.; KUSAK, G.; DOMACINOVIC, J.; SINKO, G.; JELIC, D.; ANTOLOVIC, R.; DOVARIK, Z. Strutuctural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry. v. 45, pp. 186-192, 2010. KITCHEN, D. B.; DECORNEZ, H.; FURR, J. R.; BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews in drug discovery. v. 3, pp. 935-949, 2004. 109 KOLLMAN, P. Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. American Chemical Society. v. 93, pp. 2395-2417,1993. KUNTZ, I. D.; BLANEY, J. M.; OATLEY, S. J.; LANGRIDGE, R.; FERRIN, T. E. A geometic approach to macromolecule-ligand interactions. Journal of Molecular biology. v. 161, pp. 269-288, 1982. LEACH, A. R. Molecular Modeling Principles and Applications. 2. ed. Pearson Education, England, 2001. LEVIN, E. D., SIMON, B. B. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology. v. 138, pp. 217-230, 1998. LIMA, J.S.; PEREIRA, R.H.B. Intoxica??o por organofosforados: An?lise cr?tica e considera??es especiais. Rev. Bras. de Ter. Int. v. 8 , pp. 100-101, 1996. MACHEMER, L. H.; PICKEL, M. Carbamates insecticides. Toxicology. v. 91, pp. 29-36, 1994. MASSOULI?, J.; PEZZEMENTE, L.; BON, S.; KREJCI, S.; VALLETTE, F. M. Molecular and cellular biology of cholinesterases. Progress in Neurobiology. v. 41, pp. 31-91, 1993. MESULAM, M.M.; GUILLOZET, A.; SHAW, P. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. v. 110, pp. 627-639, 2002. McCONKEY, B. J.; SOBOLEV, V.; EDELMAN, M. The performance or corrent methods in ligand-protein docking. Corrent science. v. 83, pp.845-856, 2002. MIDIO, A. F.; SILVA, E.S. Inseticidas-Acaricidas ? Organofosforados e Carbamatos. S?o Paulo, Ed. Roca Ltda, 1995. MILLARD, C. B. and BROOMFIELD, C. A. A Computer Model of Glycosylated Human Butyrylcholinesterase. Biochemical and Biophysical Research Communications. v. 189, pp. 1280-1286, 1992. MUDHER, A.; LOVESTONE, S. Alzheimer?s disease ? do tauists and baptists finally shake hands? Trends in Neurosciences. v. 25, pp. 22-25, 2002. NACHMANSOHN, D.; ROTHENBERG, M. A. Studies on cholinesterase .1. On thespecificity of the enzyme in nerve tissue. Journal of Biological Chemistry. v. 158, pp. 653-666, 1945. NELSON, D. L.; COX, M. M. ; Lehninger Princ?pios de Bioqu?mica. 3? Edi??o. Editora Ltda, Brasil. 2002. NOREL, R. WOLFSON, H.; NUSSINOV, R. Small molecular recognition: Solid angles surface representation and shape complementarity combinatorial chemistry and high throughput screening. Bioorg. Med. Chem. v. 2, pp. 177-191, 1999. 110 OLIVEIRA, F. G. Molecular docking study and development of na empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorg. Med. Chem. v.14, pp.6001-6011, 2006. OLIVEIRA, F. G. Estudo do perfil de intera??o de fosfodiesterase 4 com seus inibidores. Disserta??o de mestrado, IQ/UFRJ, 2005. ORHAN, I.; KARTAL, M.; TOSUN, F.; SENER, B. Screening of Various Phenolic Acids and Flavonoid Derivatives for Their Anticholinesterase Potential. Zeitschrift f?r Naturforschung. v. 62, pp. 829-832, 2007. PANG, Y.-P.; KOZIKOWSKI, A. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. J. Computaided Mol. Des. v. 8, pp. 669-681, 1994. PANG, Y.-P.; QUIRAM, P.; JELACIC, T.; HONG, F.; BRIMIJOIN, S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. J. Biol. Chem. v. 271, pp. 23646-23649, 1996. PANG, Y. P.; KOLLMEYER, T. M. ; HONG, F. ; LEE, J-C.; MAMMOND, P. I.; HAUGALO, K. S.; BRIMJOIN, S. Rational design of alkylene-linked bispyridiniumalidoximes as improved acetylcholinesterase reactivators. Chemistry & Biology. v.10, pp. 491-502, 2003. PENG, L. F. Acetylcholinesterase inhibition by territrem B derivatives. Journal Natural Products. v. 58, pp. 857-862, 1995. PEOPLE, J. A.; SANTRY, D. P.; SEGAL, G. A. Approximate self-consistent molecular orbital theory. I. Invariant procedures. Journal of chemical physics. v. 43, pp. 129- 135, 1965. PEOPLE, J. A.; SEGAL, G. A. Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap. Journal of chemical physics. v. 43, pp. 136- 149, 1965. PIAZZI, L.; CAVALLI, A.; BELLUTI, F.; BISI, A.; GOBBI, S.; BARTOLINI, M.; ANDRISANO, V.; RACANATINI, M.; RAMPA, A. Extensive SAR and omputational Studies of 3-{4-[(Benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2H-2-hromenone (AP2238) Derivatives. Journal of Medicinal Chemistry. v. 50, pp. 4250-4254, 2007. Pontes, R. J. S.; Regazzi, A. C.F.; Lima, J.W.O.; Kerr-Pontes, L.R.S. Efeito residual de presenta??es comerciais dos larvicidas temefos e Bacillus thuringiensis israelensis sobre larvas de Aedes aegypti em recipientes com renova??o de ?gua. Revista da Sociedade Brasileira de Medicina Tropical. v. 38, pp. 316-321, 2005. Ramachandran, G. N.; Sasiskeharan, V.. Conformation of polypeptides and proteins. Advances in Protein Chemistry. v. 23, pp. 283-256, 1968. RAUX, B. In computational biochemistry and biophisics. Eds. Becker. New York, 2001. ROCHA, G. B. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Compt. Chem. v.27, pp.1101-1111, 2006. 111 ROGERS, S. L.; DOODY, R. S.; MOHS, R. C. Friedhoff LT and the Donepezil Study Group. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, doubleblind doubleblind, placebo-controlled study. Archives of Internal Medicine. v. 158, pp. 1021-1031, 1998. ROGERS, S.L.; Farlow M. R.; Mohs, R. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer?s disease. Neurology. v. 50, pp.136-145, 1998. ROOK, Y.; WINKELER, T.; SCHMIDTKE, K.; GAUBE, F.; SCHEPMANN, F.; WUNSCH, B.; HEILMANN, J.; LEHMANN, J. Bivalent ?-carbolines as potencial multitarget Anti-Alzeimer agents. J. medicinal chemistry. v. 53, pp. 3611-3617, 2010. ROST, B. Twilight zone of protein sequence alignments. Protein engineering. v. 12, pp. 85- 94, 1999. Rydberg, E.H.; Brummstein, B.; Greenblatt, H.M.;Wong, D.M.; Shaya, D.; Williams, L.D.; Carlier, P.R.; Pang, Y-P.; Silman, I.; Sussman, J.L.Complexes of Alkylene-Linked Tacrine Dimers with Torpedo californica Acetylcholinesterase: Binding of Bis(5)-tacrineProduces a Dramatic Rearrangement in the Active-Site Gorge. Journal of medicinal Chemistry. v. 49 pp. 5491-5500, 2006. SANTOS FILHO, O. A. & ALENCASTRO, R. B. Modelagem de Prote?nas por Homologia. Quim. Nova. v. 26, pp. 253-259, 2003. SANTOS, V. M. R.; DONNICI, C. L.; DACOSTA, J.B.N.; CAXEIRO, J.M.R. Compostos Oroganofosforados Pentavalentes: Hist?rico, m?todos sint?ticos de prepara??o e aplica??es como inseticidas e agentes antitumorais. Qu?m. Nova. v.30, pp. 159-179, 2007. SAYLE, R. A.; Milner-White, E. J.. Rasmol: biomolecular graphics for all. Trends in biochemical sciences. v. 20, pp. 374-376, 1995. SCHWEDE, T. Swiss-model: an automated protein homology-modeling server. Nucleic Acids Research. v.31, pp.3381-3385, 2003. SEARLE, M. S. Partitioning of free energy contributions in the estimations of binding constants: residual motions and consequence for amide-amide hydrogen bond strengths. J. Am. Chem. Soc. v.114, pp.10697-10704, 1992. SEARLE, M. S. WILLIAMS D. H. The cost ofconformational order: entropy changes in molecular associations. J. Am. Chem. Soc. v.114, pp.10690-10697, 1992. SHIMIZU, K. Estudo do m?todo de equaliza??o da eletronegatividade no c?lculo de energias livres de solvata??o ? GBEEM ? ELR. 2005. Tese de doutorado ? USP, S?o Paulo, 2005. SILVA, G. R. Estudo da reativa??o da acetilcolinesterase inibida por organofosforados: an?lise conformacional da mol?cula de HI-6 e simula??o da rea??o de desfosforila??o. 2005. Disserta??o ( mestrado em ?rea envolvida ) ? IME, Rio de Janeiro, 2005. SOREQ, H.; BEN-AZIZ, R.; PRODY, C.A.; SEIDMAN, S.; GNATT, A.; NEVILLE, L.; LIEMAN-HURWITZ, J.; LEV-LEHMAN, E.; GINZBERG, D.; LIPIDOT-LIFSON, 112 Y. Molecular cloning and construction of the coding region for human acetylcholineterase reveals a G + C-rich attenuating structure. Proceedings of the Nacional Academy of Science. v. 87, pp. 9688-9692, 1990. SRINIVASAN, J. Continuum solvent studies of the stability of DNA, RNA, and hosphoramidate?DNAhelices. J. Am. Chem. Soc. v.120, pp.9401-9409, 1998. Stewart, J.J.P. Optimisation of parameters for semi-empirical methodsI. method. J Comput. Chem. v. 10, pp. 209-220, 1989-a. Stewart, J.J.P. Optimisation of parameters for semi-empirical methods II. Aplications. J Comput. Chem. v. 10, pp. 221-264, 1989-b. Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. v. 13, pp.1173?1213, 2007. SCHUMACHER, M.; CAMP, S.; MAULET, Y.; NEWTON, M.; MACPHEEQUIGLEY, K.; TAYLOR, S.S.; FRIEDMAN, T.; TAYLOR, P. Primary structures of Torpedo-californica acetylcholinesterase deduced from its cDNA sequence. Nature. Vol. 319, p. 407-409, 1986. Thiel, W.; Voityuk, A.A. Extension of MNDO to d orbitals: Parameters and results for Silicon. J Molecular Structure (Theochem). v. 313, pp. 141-154,1994. TOMASI, J.; MENNUCCI, B. & CAMMI, R. Quantum mechanical continuum solvation models. Chemical reviews. v 105, pp. 2999-3094, 2005. TORRES, J. M.; LIRA, A, F.; SILVA, D. R.; GUSSO, L. M.; SANT?ANNA, C. M. R.; KUMMERLE, A. E.; RUMJANEK, V. M. Structure insights into cholinesterases inhibition by harmane beta-carbolinium derivatives: A kinetics molecular modeling approach. Phytochemistry. v. 81, pp. 24-30, 2012. TORRES, J. M. Estudo cin?tico da atividade anticolinester?sica de derivados ?-carbon?licos do produto natural harmana. Disserta??o de mestrado UFRRJ, 2011. RUHLAR, D. G.; STORER, J. W.; GIESEN, D. J.; CRAMER, C. J. J. comput. Aided mol. Des. v. 9, pp. 87-110, 1995. VIEGAS, C. J.; DA SILVA, V. B.; FURLAN, M.; ALBERTO, C. M. F.; BARREIRO, E. J. Produtos Naturais como canditados a f?rmacos ?teis no tratamento do Mal de Alzheimer. Qu?mica Nova. v. 27, p. 655-660, 2004. VERDONK, M. L.; COLE, J. C.; HARTSHOM, M. J.; MURRAY, C. W. & TAYLOR, R. D. Improved protein-ligand docking using GOLD Portein. v. 52, pp. 609-623, 2003. WALDEMAR, G.; DUBOIS, B.; EMER, M. The Category Cued Recall test in very mild Alzheimer's disease: discriminative validity and correlation with semantic memory functions. European Journal of Neurology. v. 14, pp. 102-108, 2007. WANG, S.; MILNE, G. W. A.; NICKLAUS, M. C.; MARQUEZ, V. E.; LEE, J.; BLUMBERG, P. M. Protein kinase C modeling of the binding site and predisction of binding constants. Journal of medicinal chemistry. v. 37, pp. 1326-1338, 1994. 113 WILLIAMS, D. H. WESTWELL, M. S. Aspects of weak interactions. Chemical Society Reviews. v. 27, pp. 57-63, 1998.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ci?ncias Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/3110/18/2014+-+Daniel+Rosa+da+Silva.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/3110/17/2014+-+Daniel+Rosa+da+Silva.pdf.txt
http://localhost:8080/tede/bitstream/jspui/3110/2/2014+-+Daniel+Rosa+da+Silva.pdf
http://localhost:8080/tede/bitstream/jspui/3110/1/license.txt
bitstream.checksum.fl_str_mv 643947ce42e099bb8d0ef3d4ab3357f9
2e156486a4ce7b0fb1c0dd9863580000
79c4a13e9a737ac69fe6ceb4381c234e
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220302077296640