Implementação numérica da teoria quântica de circuitos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Silva, José Jaédson Barros da
Orientador(a): Almeida, Francisco Assis Gois de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Pós-Graduação em Física
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://ri.ufs.br/jspui/handle/riufs/12674
Resumo: During the decade 1980s, advances in nanoscience became possible the construction of nanodevices that allowed the discovery of phenomena related to quantum mechanics such as weak localization, universal conductance fluctuations and the quantization of conductance. Since then, coherent electronic transport in mesoscopic systems has attracted the interest of various experimental and theoretical physicists. In this thesis we developed a numerical method, based on Newton’s iterative method, to calculate pseudocurrent of quantum circuit theory. From the pseudoccurent we determine the observables of transport, as conductance and shot noise power, in a linear network and in a ring of quantum dots. In order to show the effectiveness of the numerical method, when possible we compare our results with analytical predictions from the literature and with simulations of random matrices theory. In all cases the numerical results showed excellent agreement with the analytical predictions and with the simulation. We also determine the transport observables for situations in which the analytical method can not approach such as a linear network of quantum dots with the transparencies of the barriers random and a ring of quantum dots with all the transparencies of the barriers independent. We calculate the average processing time of the algorithm for a linear network of L quantum dots and we show that it scales with L. Therefore, the algorithm has excellent efficiency. We also apply the numerical method to calculate the density of Fabry-Perot resonant modes in quantum dots networks which, according to the literature, can be identified as a kind of order parameter in a second-order quantum phase transition theory. When comparing these numerical results with analytical predictions and simulation of random matrices theory, again the numerical method showed excellent agreement. For certain barrier transparency values, Fabry-Perot resonant modes are suppressed. We calculate the critical properties of this suppression in a linear network and a ring of quantum dots. In all cases the critical exponent obtained was 1/2, therefore it is a universal behavior. We show that for certain values of barrier transparency, in a linear network with L ≥ 2 quantum dots and in a ring of quantum dots, arises a new transition line delimiting the region of the Fabry-Perot resonant modes and the region in which these modes are suppressed. For the quantum dots ring, we also show that the transition lines become asymmetric for certain barrier transparency values.
id UFS-2_0ab4f3e9fa3ad191d6e7c414cbd2997e
oai_identifier_str oai:oai:ri.ufs.br:repo_01:riufs/12674
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Silva, José Jaédson Barros daAlmeida, Francisco Assis Gois de2020-02-05T21:12:00Z2020-02-05T21:12:00Z2019-07-26SILVA, José Jaédson Barros da. Implementação numérica da teoria quântica de circuitos. 2019. 138 f. Tese (Doutorado em Física) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.http://ri.ufs.br/jspui/handle/riufs/12674During the decade 1980s, advances in nanoscience became possible the construction of nanodevices that allowed the discovery of phenomena related to quantum mechanics such as weak localization, universal conductance fluctuations and the quantization of conductance. Since then, coherent electronic transport in mesoscopic systems has attracted the interest of various experimental and theoretical physicists. In this thesis we developed a numerical method, based on Newton’s iterative method, to calculate pseudocurrent of quantum circuit theory. From the pseudoccurent we determine the observables of transport, as conductance and shot noise power, in a linear network and in a ring of quantum dots. In order to show the effectiveness of the numerical method, when possible we compare our results with analytical predictions from the literature and with simulations of random matrices theory. In all cases the numerical results showed excellent agreement with the analytical predictions and with the simulation. We also determine the transport observables for situations in which the analytical method can not approach such as a linear network of quantum dots with the transparencies of the barriers random and a ring of quantum dots with all the transparencies of the barriers independent. We calculate the average processing time of the algorithm for a linear network of L quantum dots and we show that it scales with L. Therefore, the algorithm has excellent efficiency. We also apply the numerical method to calculate the density of Fabry-Perot resonant modes in quantum dots networks which, according to the literature, can be identified as a kind of order parameter in a second-order quantum phase transition theory. When comparing these numerical results with analytical predictions and simulation of random matrices theory, again the numerical method showed excellent agreement. For certain barrier transparency values, Fabry-Perot resonant modes are suppressed. We calculate the critical properties of this suppression in a linear network and a ring of quantum dots. In all cases the critical exponent obtained was 1/2, therefore it is a universal behavior. We show that for certain values of barrier transparency, in a linear network with L ≥ 2 quantum dots and in a ring of quantum dots, arises a new transition line delimiting the region of the Fabry-Perot resonant modes and the region in which these modes are suppressed. For the quantum dots ring, we also show that the transition lines become asymmetric for certain barrier transparency values.Durante a década de 1980, o avanço na área da nanociência tornou possível a construção de nanodispositivos que permitiram a descoberta de fenômenos relacionados à mecânica quântica, como a localização fraca, as flutuações universais de condutância e a quantização da condutância. Desde então, o transporte eletrônico coerente em sistemas mesoscópicos tem atraído o interesse de vários físicos experimentais e teóricos. Nesta tese desenvolvemos um método numérico, baseado no método iterativo de Newton, para calcular a pseudocorrente da teoria quântica de circuitos. A partir da pseudocorrente determinamos os observáveis de transporte, como condutância e potência do ruído de disparo, em uma rede linear e em um anel de pontos quânticos. Com o intuito de mostrar a eficácia do método numérico, quando possível comparamos nossos resultados com previsões analíticas da literatura e com simulações via teoria de matrizes aleatórias. Em todos os casos os resultados numéricos mostraram excelente concordância com as previsões analíticas e com a simulação. Determinamos também os observáveis de transporte para situações em que o método analítico não consegue abordar, como uma rede linear de pontos quânticos com as transparências das barreiras aleatórias e um anel de pontos quânticos com todas as transparências das barreiras independentes. Calculamos o tempo médio de processamento do algoritmo para uma rede linear de L pontos quânticos e mostramos que este tempo escala com L. Portanto, o algoritmo possui uma excelente eficiência. Também aplicamos o método numérico para calcular a densidade de modos ressonantes de Fabry-Perot em redes de pontos quânticos que, de acordo com a literatura, pode ser identificada como um tipo de parâmetro de ordem em uma teoria de transição de fase quântica de segunda ordem. Ao comparar estes resultados numéricos com previsões analíticas e simulação de teoria de matrizes aleatórias, novamente o método numérico mostrou excelente concordância. Para determinados valores de transparência das barreiras, os modos ressonantes de Fabry-Perot são suprimidos. Calculamos as propriedades críticas desta supressão em uma rede linear e em um anel de pontos quânticos. Em todos os casos o expoente crítico obtido foi 1/2, portanto trata-se de um comportamento universal. Mostramos que para determinados valores de transparência das barreiras, em uma rede linear com L ≥ 2 e em um anel de pontos quânticos, surge uma nova linha de transição delimitando a região dos modos ressonantes de Fabry-Perot e a região em que há supressão destes modos. Para o anel de pontos quânticos, mostramos também que as linhas de transição tornam-se assimétricas para determinados valores das transparências das barreiras.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão Cristóvão, SEporTeoria quântica de circuitosAbordagem numéricaFísica do transporte eletrônico coerentePonto quânticoEstatística de contagem de cargasModos ressonantes de Fabry-PerotQuantum circuit theoryNumerical approachPhysics of coherent electronic transportQuantum dotCounting statistics of chargeFabry-Perot resonant modesCIENCIAS EXATAS E DA TERRA::FISICAImplementação numérica da teoria quântica de circuitosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPós-Graduação em FísicaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessTEXTJOSE_JAEDSON_BARROS_SILVA.pdf.txtJOSE_JAEDSON_BARROS_SILVA.pdf.txtExtracted texttext/plain291037https://ri.ufs.br/jspui/bitstream/riufs/12674/3/JOSE_JAEDSON_BARROS_SILVA.pdf.txtb1ec9d2d6260a0f0df4b86e3cc8b8011MD53THUMBNAILJOSE_JAEDSON_BARROS_SILVA.pdf.jpgJOSE_JAEDSON_BARROS_SILVA.pdf.jpgGenerated Thumbnailimage/jpeg1304https://ri.ufs.br/jspui/bitstream/riufs/12674/4/JOSE_JAEDSON_BARROS_SILVA.pdf.jpg85ebedc9fe733c471adbacded2391972MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/12674/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALJOSE_JAEDSON_BARROS_SILVA.pdfJOSE_JAEDSON_BARROS_SILVA.pdfapplication/pdf6787546https://ri.ufs.br/jspui/bitstream/riufs/12674/2/JOSE_JAEDSON_BARROS_SILVA.pdfc45648267add7e0bda76abcde8d719dbMD52riufs/126742020-02-05 18:12:00.992oai:oai:ri.ufs.br:repo_01:riufs/12674TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2020-02-05T21:12Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Implementação numérica da teoria quântica de circuitos
title Implementação numérica da teoria quântica de circuitos
spellingShingle Implementação numérica da teoria quântica de circuitos
Silva, José Jaédson Barros da
Teoria quântica de circuitos
Abordagem numérica
Física do transporte eletrônico coerente
Ponto quântico
Estatística de contagem de cargas
Modos ressonantes de Fabry-Perot
Quantum circuit theory
Numerical approach
Physics of coherent electronic transport
Quantum dot
Counting statistics of charge
Fabry-Perot resonant modes
CIENCIAS EXATAS E DA TERRA::FISICA
title_short Implementação numérica da teoria quântica de circuitos
title_full Implementação numérica da teoria quântica de circuitos
title_fullStr Implementação numérica da teoria quântica de circuitos
title_full_unstemmed Implementação numérica da teoria quântica de circuitos
title_sort Implementação numérica da teoria quântica de circuitos
author Silva, José Jaédson Barros da
author_facet Silva, José Jaédson Barros da
author_role author
dc.contributor.author.fl_str_mv Silva, José Jaédson Barros da
dc.contributor.advisor1.fl_str_mv Almeida, Francisco Assis Gois de
contributor_str_mv Almeida, Francisco Assis Gois de
dc.subject.por.fl_str_mv Teoria quântica de circuitos
Abordagem numérica
Física do transporte eletrônico coerente
Ponto quântico
Estatística de contagem de cargas
Modos ressonantes de Fabry-Perot
topic Teoria quântica de circuitos
Abordagem numérica
Física do transporte eletrônico coerente
Ponto quântico
Estatística de contagem de cargas
Modos ressonantes de Fabry-Perot
Quantum circuit theory
Numerical approach
Physics of coherent electronic transport
Quantum dot
Counting statistics of charge
Fabry-Perot resonant modes
CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.eng.fl_str_mv Quantum circuit theory
Numerical approach
Physics of coherent electronic transport
Quantum dot
Counting statistics of charge
Fabry-Perot resonant modes
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA
description During the decade 1980s, advances in nanoscience became possible the construction of nanodevices that allowed the discovery of phenomena related to quantum mechanics such as weak localization, universal conductance fluctuations and the quantization of conductance. Since then, coherent electronic transport in mesoscopic systems has attracted the interest of various experimental and theoretical physicists. In this thesis we developed a numerical method, based on Newton’s iterative method, to calculate pseudocurrent of quantum circuit theory. From the pseudoccurent we determine the observables of transport, as conductance and shot noise power, in a linear network and in a ring of quantum dots. In order to show the effectiveness of the numerical method, when possible we compare our results with analytical predictions from the literature and with simulations of random matrices theory. In all cases the numerical results showed excellent agreement with the analytical predictions and with the simulation. We also determine the transport observables for situations in which the analytical method can not approach such as a linear network of quantum dots with the transparencies of the barriers random and a ring of quantum dots with all the transparencies of the barriers independent. We calculate the average processing time of the algorithm for a linear network of L quantum dots and we show that it scales with L. Therefore, the algorithm has excellent efficiency. We also apply the numerical method to calculate the density of Fabry-Perot resonant modes in quantum dots networks which, according to the literature, can be identified as a kind of order parameter in a second-order quantum phase transition theory. When comparing these numerical results with analytical predictions and simulation of random matrices theory, again the numerical method showed excellent agreement. For certain barrier transparency values, Fabry-Perot resonant modes are suppressed. We calculate the critical properties of this suppression in a linear network and a ring of quantum dots. In all cases the critical exponent obtained was 1/2, therefore it is a universal behavior. We show that for certain values of barrier transparency, in a linear network with L ≥ 2 quantum dots and in a ring of quantum dots, arises a new transition line delimiting the region of the Fabry-Perot resonant modes and the region in which these modes are suppressed. For the quantum dots ring, we also show that the transition lines become asymmetric for certain barrier transparency values.
publishDate 2019
dc.date.issued.fl_str_mv 2019-07-26
dc.date.accessioned.fl_str_mv 2020-02-05T21:12:00Z
dc.date.available.fl_str_mv 2020-02-05T21:12:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, José Jaédson Barros da. Implementação numérica da teoria quântica de circuitos. 2019. 138 f. Tese (Doutorado em Física) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/12674
identifier_str_mv SILVA, José Jaédson Barros da. Implementação numérica da teoria quântica de circuitos. 2019. 138 f. Tese (Doutorado em Física) - Universidade Federal de Sergipe, São Cristóvão, SE, 2019.
url http://ri.ufs.br/jspui/handle/riufs/12674
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Física
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/12674/3/JOSE_JAEDSON_BARROS_SILVA.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/12674/4/JOSE_JAEDSON_BARROS_SILVA.pdf.jpg
https://ri.ufs.br/jspui/bitstream/riufs/12674/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/12674/2/JOSE_JAEDSON_BARROS_SILVA.pdf
bitstream.checksum.fl_str_mv b1ec9d2d6260a0f0df4b86e3cc8b8011
85ebedc9fe733c471adbacded2391972
098cbbf65c2c15e1fb2e49c5d306a44c
c45648267add7e0bda76abcde8d719db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1851759347146686464