Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Menezes, Angelo Garangau
Orientador(a): Estombelo-Montesco, Carlos Alberto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Pós-Graduação em Ciência da Computação
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/jspui/handle/riufs/23083
Resumo: Surveillance scenarios are prone to several problems since they usually involve low-resolution footage, and there is no control of how far the subjects may be from the camera in the first place. This situation is suitable for the application of upsampling (super-resolution) algorithms since they may be able to recover the discriminant properties of the subjects involved. While general super-resolution approaches were proposed to enhance image quality for humanlevel perception, biometrics super-resolution methods seek the best “computer perception” version of the image since their focus is on improving automatic recognition performance. Convolutional neural networks and deep learning algorithms, in general, have been applied to computer vision tasks and are now state-of-the-art for several sub-domains, including image classification, restoration, and super-resolution. However, no work has evaluated the effects that the latest proposed super-resolution methods may have upon the accuracy and face verification performance in low-resolution “in-the-wild” data. This project aimed at evaluating and adapting different deep neural network architectures for the task of face super-resolution driven by face recognition performance in real-world low-resolution images. The experimental results in a real-world surveillance and attendance datasets showed that general super-resolution architectures might enhance face verification performance of deep neural networks trained on high-resolution faces. Also, since neural networks are function approximators and can be trained based on specific objective functions, the use of a customized loss function optimized for feature extraction showed promising results for recovering discriminant features in low-resolution face images.
id UFS-2_47fc1a93c444cbc61a6ad68069f2efc3
oai_identifier_str oai:oai:ri.ufs.br:repo_01:riufs/23083
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Menezes, Angelo GarangauEstombelo-Montesco, Carlos Alberto2025-09-05T17:14:24Z2025-09-05T17:14:24Z2019-12-12MENEZES, Angelo Garangau. Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition. 2019. 70 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2019.https://ri.ufs.br/jspui/handle/riufs/23083Surveillance scenarios are prone to several problems since they usually involve low-resolution footage, and there is no control of how far the subjects may be from the camera in the first place. This situation is suitable for the application of upsampling (super-resolution) algorithms since they may be able to recover the discriminant properties of the subjects involved. While general super-resolution approaches were proposed to enhance image quality for humanlevel perception, biometrics super-resolution methods seek the best “computer perception” version of the image since their focus is on improving automatic recognition performance. Convolutional neural networks and deep learning algorithms, in general, have been applied to computer vision tasks and are now state-of-the-art for several sub-domains, including image classification, restoration, and super-resolution. However, no work has evaluated the effects that the latest proposed super-resolution methods may have upon the accuracy and face verification performance in low-resolution “in-the-wild” data. This project aimed at evaluating and adapting different deep neural network architectures for the task of face super-resolution driven by face recognition performance in real-world low-resolution images. The experimental results in a real-world surveillance and attendance datasets showed that general super-resolution architectures might enhance face verification performance of deep neural networks trained on high-resolution faces. Also, since neural networks are function approximators and can be trained based on specific objective functions, the use of a customized loss function optimized for feature extraction showed promising results for recovering discriminant features in low-resolution face images.Os cenários de vigilância e monitoramento estão propensos a vários problemas, pois não existe um controle sobre a distância dos possíveis suspeitos para a câmera e geralmente as tarefas envolvem avaliação de imagens em baixa resolução. Para tais situações, a aplicação de algoritmos de super-resolution (super-resolução) pode ser uma alternativa adequada para recuperar as propriedades discriminantes das faces dos suspeitos envolvidos. Embora abordagens gerais de super-resolução tenham sido propostas para aprimorar a qualidade da imagem para a percepção no nível humano, os métodos de super-resolução biométrica buscam a melhor versão da imagem para “percepção” do computador, pois seu foco é melhorar o desempenho do reconhecimento automático. Redes neurais convolucionais e algoritmos de aprendizado profundo, em geral, têm sido aplicados a tarefas de visão computacional e agora são o estado da arte em seus vários subdomínios, incluindo classificação, restauração e superresolução de imagens. No entanto, poucos trabalhos avaliaram os efeitos que os mais recentes métodos de super-resolução propostos podem ter sobre a precisão e o desempenho da verificação de faces em imagens de baixa resolução do mundo real. Este projeto teve como objetivo avaliar e adaptar diferentes arquiteturas de redes neurais profundas para a tarefa de super-resolução de faces, impulsionada pelo desempenho do reconhecimento de faces em imagens de baixa resolução do mundo real. Os resultados experimentais em um conjunto de dados de monitoramento/vigilância e avaliação de presença universitária mostraram que arquiteturas gerais de super-resolução podem melhorar o desempenho da verificação de faces utilizando uma redes neural profunda treinada em faces de alta resolução para extração de características. Além disso, como as redes neurais são aproximadores de funções e podem ser treinadas com base em funções objetivo específicas, o uso de uma função de custo personalizada que foi otimizada para extração de características da face mostrou resultados promissores para recuperar atributos discriminantes em imagens de faces em baixa resolução.São CristóvãoporComputaçãoPercepção facialAlgorítmos computacionaisIdentificação biométricaRedes neuraisReconhecimento facial em baixa resoluçãoSuper-resoluçãoAprendizado profundoRedes neurais convolucionaisLow-resolution face recognitionSuper-resolutionDeep learningConvolutional neural networksCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAnalysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognitioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Ciência da ComputaçãoUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/23083/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALANGELO_GARANGAU_MENEZES.pdfANGELO_GARANGAU_MENEZES.pdfapplication/pdf25990995https://ri.ufs.br/jspui/bitstream/riufs/23083/2/ANGELO_GARANGAU_MENEZES.pdf2870a1cbdfe8f3f4b925cad7ee25b84eMD52riufs/230832025-09-05 14:14:31.019oai:oai:ri.ufs.br:repo_01:riufs/23083TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2025-09-05T17:14:31Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition
title Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition
spellingShingle Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition
Menezes, Angelo Garangau
Computação
Percepção facial
Algorítmos computacionais
Identificação biométrica
Redes neurais
Reconhecimento facial em baixa resolução
Super-resolução
Aprendizado profundo
Redes neurais convolucionais
Low-resolution face recognition
Super-resolution
Deep learning
Convolutional neural networks
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition
title_full Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition
title_fullStr Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition
title_full_unstemmed Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition
title_sort Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition
author Menezes, Angelo Garangau
author_facet Menezes, Angelo Garangau
author_role author
dc.contributor.author.fl_str_mv Menezes, Angelo Garangau
dc.contributor.advisor1.fl_str_mv Estombelo-Montesco, Carlos Alberto
contributor_str_mv Estombelo-Montesco, Carlos Alberto
dc.subject.por.fl_str_mv Computação
Percepção facial
Algorítmos computacionais
Identificação biométrica
Redes neurais
Reconhecimento facial em baixa resolução
Super-resolução
Aprendizado profundo
Redes neurais convolucionais
topic Computação
Percepção facial
Algorítmos computacionais
Identificação biométrica
Redes neurais
Reconhecimento facial em baixa resolução
Super-resolução
Aprendizado profundo
Redes neurais convolucionais
Low-resolution face recognition
Super-resolution
Deep learning
Convolutional neural networks
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Low-resolution face recognition
Super-resolution
Deep learning
Convolutional neural networks
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Surveillance scenarios are prone to several problems since they usually involve low-resolution footage, and there is no control of how far the subjects may be from the camera in the first place. This situation is suitable for the application of upsampling (super-resolution) algorithms since they may be able to recover the discriminant properties of the subjects involved. While general super-resolution approaches were proposed to enhance image quality for humanlevel perception, biometrics super-resolution methods seek the best “computer perception” version of the image since their focus is on improving automatic recognition performance. Convolutional neural networks and deep learning algorithms, in general, have been applied to computer vision tasks and are now state-of-the-art for several sub-domains, including image classification, restoration, and super-resolution. However, no work has evaluated the effects that the latest proposed super-resolution methods may have upon the accuracy and face verification performance in low-resolution “in-the-wild” data. This project aimed at evaluating and adapting different deep neural network architectures for the task of face super-resolution driven by face recognition performance in real-world low-resolution images. The experimental results in a real-world surveillance and attendance datasets showed that general super-resolution architectures might enhance face verification performance of deep neural networks trained on high-resolution faces. Also, since neural networks are function approximators and can be trained based on specific objective functions, the use of a customized loss function optimized for feature extraction showed promising results for recovering discriminant features in low-resolution face images.
publishDate 2019
dc.date.issued.fl_str_mv 2019-12-12
dc.date.accessioned.fl_str_mv 2025-09-05T17:14:24Z
dc.date.available.fl_str_mv 2025-09-05T17:14:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MENEZES, Angelo Garangau. Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition. 2019. 70 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2019.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/23083
identifier_str_mv MENEZES, Angelo Garangau. Analysis and evaluation of deep learning based super-resolution algorithms to improve performance in low-resolution face recognition. 2019. 70 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2019.
url https://ri.ufs.br/jspui/handle/riufs/23083
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe (UFS)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/23083/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/23083/2/ANGELO_GARANGAU_MENEZES.pdf
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
2870a1cbdfe8f3f4b925cad7ee25b84e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1851759434924032000