Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Xavier, Paulo Adriano lattes
Orientador(a): Gimenez, Iara de Fátima
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Pós-Graduação em Química
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/6110
Resumo: This work reports the study of semiconductor nanocrystals, also known as quantum dots, focusing specifically on zinc sulfide (ZnS). Two different capping agents were used (glutathione and N-acetyl-L-cysteine) for the preparation of ZnS nanocrystals via aqueous route. The study aimed specifically at evaluating the efficacy of the capping agents in the stabilization of semiconductor nanocrystal suspensions towards coalescence as well as in controlling nanocrystal size and optical properties. In addition the effect of doping the ZnS nanocrystals with transition metal ions (Cu2+ and Co2+) on the photoluminescence properties has also been studied. Finally the possibility of energy transfer between the semiconductor nanocrystals and the safranine dye was also evaluated. Spherical-shaped glutathione and N-acetyl-L-cysteine-capped ZnS nanocrystal were obtained with diameters below 5 nm free from coalescence, showing that both iv capping agents were efficient as stabilizers. Both capping agents lead to the formation of ZnS nancrystals with blue fluorescence, typical of the involvement of surface defect states of ZnS. However, samples prepared with glutathione exhibited higher fluorescence intensities than those obtained with N-acetyl-L-cysteine. Upon doping glutathione-capped ZnS nanocrystals with both copper and cobalt the fluorescence intensities decreased gradually following the increase in nominal concentration of dopants, suggesting that cobalt ions played a similar role as copper. Considering both the effect on the intensities and the absence of d-d metal transitions this study suggests that doping reduced the concentration of cation vacancies as well as the involvement of at least one cobalt state in the transition processes. Changes in emission wavelength with different dopant concentrations were not observed probably owing to lack of influence on the nanocrystal size. Finally the preliminary study of fluorescence quenching of semiconductor nanocrystals by safranine dye indicated that significantly low concentrations were able to quench the emissions. Different components of the emission band were distinctly affected. Data analysis by Stern-Volmer plots suggested the occurrence of more than one transfer processes (energy and/or electron transfer). This study will be refined in future works.
id UFS-2_4bbd2c14f34d000f55b7e8e2b710a0ce
oai_identifier_str oai:ufs.br:riufs/6110
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Xavier, Paulo AdrianoGimenez, Iara de Fátimahttp://lattes.cnpq.br/60083250629874222017-09-27T13:57:46Z2017-09-27T13:57:46Z2013-09-10https://ri.ufs.br/handle/riufs/6110This work reports the study of semiconductor nanocrystals, also known as quantum dots, focusing specifically on zinc sulfide (ZnS). Two different capping agents were used (glutathione and N-acetyl-L-cysteine) for the preparation of ZnS nanocrystals via aqueous route. The study aimed specifically at evaluating the efficacy of the capping agents in the stabilization of semiconductor nanocrystal suspensions towards coalescence as well as in controlling nanocrystal size and optical properties. In addition the effect of doping the ZnS nanocrystals with transition metal ions (Cu2+ and Co2+) on the photoluminescence properties has also been studied. Finally the possibility of energy transfer between the semiconductor nanocrystals and the safranine dye was also evaluated. Spherical-shaped glutathione and N-acetyl-L-cysteine-capped ZnS nanocrystal were obtained with diameters below 5 nm free from coalescence, showing that both iv capping agents were efficient as stabilizers. Both capping agents lead to the formation of ZnS nancrystals with blue fluorescence, typical of the involvement of surface defect states of ZnS. However, samples prepared with glutathione exhibited higher fluorescence intensities than those obtained with N-acetyl-L-cysteine. Upon doping glutathione-capped ZnS nanocrystals with both copper and cobalt the fluorescence intensities decreased gradually following the increase in nominal concentration of dopants, suggesting that cobalt ions played a similar role as copper. Considering both the effect on the intensities and the absence of d-d metal transitions this study suggests that doping reduced the concentration of cation vacancies as well as the involvement of at least one cobalt state in the transition processes. Changes in emission wavelength with different dopant concentrations were not observed probably owing to lack of influence on the nanocrystal size. Finally the preliminary study of fluorescence quenching of semiconductor nanocrystals by safranine dye indicated that significantly low concentrations were able to quench the emissions. Different components of the emission band were distinctly affected. Data analysis by Stern-Volmer plots suggested the occurrence of more than one transfer processes (energy and/or electron transfer). This study will be refined in future works.No presente trabalho foram estudados nanocristais semicondutores, tambem conhecidos como pontos quanticos ou quantum dots, selecionando-se especificamente o sulfeto de zinco (ZnS). Foram utilizados ois diferentes agentes estabilizantes (glutationa e N-acetil-L-cisteina) na obtencao de nanocristais de ZnS por via aquosa. Buscou-se avaliar, especificamente, a eficiencia dos agentes tiois na estabilizacao das suspensoes de nanocristais frente a agregacao, no controle e distribuicao de tamanhos das particulas, bem como nas propriedades opticas. Estudou-se, alem disto, o efeito da dopagem com ions de metais de transicao (Cu2+ e Co2+) nas propriedades de fluorescencia. Por fim, foi avaliada a possibilidade de transferencia de energia entre os nanocristais semicondutores dopados e o corante safranina. Os nanocristais semicondutores de ZnS estabilizados por glutationa e por N-acetil-L-cisteina foram obtidos com tamanhos abaixo de 5 nm, formas aproximadamente esfericas e livres de agregacao, evidenciando que ambos agentes ii estabilizantes foram eficientes. Ambos agentes estabilizantes levaram a formacao de nanocristais com emissoes na regiao do azul, caracteristicas do envolvimento de estados de defeito de superficie do ZnS. No entanto, as amostras preparadas com glutationa apresentaram maiores intensidades de fluorescencia, quando comparadas com aquelas preparadas com N-acetil-L-cisteina. A dopagem dos nanocristais semicondutores ZnS/Glu com ions cobre e cobalto teve um efeito de diminuir as intensidades de fluorescencia dependente da concentracao nominal dos dopantes em ambos os casos, sugerindo que o cobalto atua de modo analogo ao cobre. Considerando-se tanto o efeito sobre as intensidades de emissao do ZnS quanto a ausencia de transicoes d-d do metal, o estudo sugeriu que a dopagem reduz a concentracao de vacancias de cations, bem como o envolvimento de pelo menos um dos estados eletronicos do cobalto nos processos de transicao. Nao se observou variacoes nos comprimentos de onda para diferentes concentracoes dos dopantes, provavelmente pela ausencia de interferencia no tamanho dos nanocristais semicondutores formados. Por fim, o estudo preliminar da supressao de fluorescencia dos nanocristais semicondutores pelo efeito de diferentes concentracoes do corante safranina mostrou que concentracoes significativamente baixas do corante foram suficientes para diminuir a intensidade de fluorescencia. Diferentes componentes das bandas de emissao dos nanocristais semicondutores foram influenciados de modo distinto. A analise dos dados pelos graficos de Stern-Volmer sugeriu a ocorrencia de mais de um processo de transferencia (energia e/ou eletrons). Este estudo sera aprofundado nos trabalhos futuros.application/pdfporNanopartículasCristaisCristais iônicosMateriais nanoestruturadosSulfeto de zincoSemicondutoresSemicondutores - DopagemCrystalsIonic crystalsNanostructured materialsSemiconductor dopingSemiconductorsZinc sulphideCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICAEstudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+Spectroscopic studies and doping of ZnS semicondutor nanocrystals with ions Co2+ and Cu2+info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Químicainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSORIGINALPAULO_ADRIANO_XAVIER.pdfapplication/pdf2051296https://ri.ufs.br/jspui/bitstream/riufs/6110/1/PAULO_ADRIANO_XAVIER.pdfd9e2027d41e3f3fe5e21c481df99129bMD51TEXTPAULO_ADRIANO_XAVIER.pdf.txtPAULO_ADRIANO_XAVIER.pdf.txtExtracted texttext/plain118299https://ri.ufs.br/jspui/bitstream/riufs/6110/2/PAULO_ADRIANO_XAVIER.pdf.txt33bcf8a438695e22f96ab239ee1377f3MD52THUMBNAILPAULO_ADRIANO_XAVIER.pdf.jpgPAULO_ADRIANO_XAVIER.pdf.jpgGenerated Thumbnailimage/jpeg1296https://ri.ufs.br/jspui/bitstream/riufs/6110/3/PAULO_ADRIANO_XAVIER.pdf.jpg3180509527553a40e9cbaeead2d2a33fMD53riufs/61102018-01-16 19:50:33.385oai:ufs.br:riufs/6110Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2018-01-16T22:50:33Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.por.fl_str_mv Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+
dc.title.alternative.eng.fl_str_mv Spectroscopic studies and doping of ZnS semicondutor nanocrystals with ions Co2+ and Cu2+
title Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+
spellingShingle Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+
Xavier, Paulo Adriano
Nanopartículas
Cristais
Cristais iônicos
Materiais nanoestruturados
Sulfeto de zinco
Semicondutores
Semicondutores - Dopagem
Crystals
Ionic crystals
Nanostructured materials
Semiconductor doping
Semiconductors
Zinc sulphide
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+
title_full Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+
title_fullStr Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+
title_full_unstemmed Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+
title_sort Estudos espectroscópicos e de dopagem de nanocristais semicondutores de ZnS com íons Co2+ Cu2+
author Xavier, Paulo Adriano
author_facet Xavier, Paulo Adriano
author_role author
dc.contributor.author.fl_str_mv Xavier, Paulo Adriano
dc.contributor.advisor1.fl_str_mv Gimenez, Iara de Fátima
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6008325062987422
contributor_str_mv Gimenez, Iara de Fátima
dc.subject.por.fl_str_mv Nanopartículas
Cristais
Cristais iônicos
Materiais nanoestruturados
Sulfeto de zinco
Semicondutores
Semicondutores - Dopagem
topic Nanopartículas
Cristais
Cristais iônicos
Materiais nanoestruturados
Sulfeto de zinco
Semicondutores
Semicondutores - Dopagem
Crystals
Ionic crystals
Nanostructured materials
Semiconductor doping
Semiconductors
Zinc sulphide
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.eng.fl_str_mv Crystals
Ionic crystals
Nanostructured materials
Semiconductor doping
Semiconductors
Zinc sulphide
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
description This work reports the study of semiconductor nanocrystals, also known as quantum dots, focusing specifically on zinc sulfide (ZnS). Two different capping agents were used (glutathione and N-acetyl-L-cysteine) for the preparation of ZnS nanocrystals via aqueous route. The study aimed specifically at evaluating the efficacy of the capping agents in the stabilization of semiconductor nanocrystal suspensions towards coalescence as well as in controlling nanocrystal size and optical properties. In addition the effect of doping the ZnS nanocrystals with transition metal ions (Cu2+ and Co2+) on the photoluminescence properties has also been studied. Finally the possibility of energy transfer between the semiconductor nanocrystals and the safranine dye was also evaluated. Spherical-shaped glutathione and N-acetyl-L-cysteine-capped ZnS nanocrystal were obtained with diameters below 5 nm free from coalescence, showing that both iv capping agents were efficient as stabilizers. Both capping agents lead to the formation of ZnS nancrystals with blue fluorescence, typical of the involvement of surface defect states of ZnS. However, samples prepared with glutathione exhibited higher fluorescence intensities than those obtained with N-acetyl-L-cysteine. Upon doping glutathione-capped ZnS nanocrystals with both copper and cobalt the fluorescence intensities decreased gradually following the increase in nominal concentration of dopants, suggesting that cobalt ions played a similar role as copper. Considering both the effect on the intensities and the absence of d-d metal transitions this study suggests that doping reduced the concentration of cation vacancies as well as the involvement of at least one cobalt state in the transition processes. Changes in emission wavelength with different dopant concentrations were not observed probably owing to lack of influence on the nanocrystal size. Finally the preliminary study of fluorescence quenching of semiconductor nanocrystals by safranine dye indicated that significantly low concentrations were able to quench the emissions. Different components of the emission band were distinctly affected. Data analysis by Stern-Volmer plots suggested the occurrence of more than one transfer processes (energy and/or electron transfer). This study will be refined in future works.
publishDate 2013
dc.date.issued.fl_str_mv 2013-09-10
dc.date.accessioned.fl_str_mv 2017-09-27T13:57:46Z
dc.date.available.fl_str_mv 2017-09-27T13:57:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ri.ufs.br/handle/riufs/6110
url https://ri.ufs.br/handle/riufs/6110
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.program.fl_str_mv Pós-Graduação em Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/6110/1/PAULO_ADRIANO_XAVIER.pdf
https://ri.ufs.br/jspui/bitstream/riufs/6110/2/PAULO_ADRIANO_XAVIER.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/6110/3/PAULO_ADRIANO_XAVIER.pdf.jpg
bitstream.checksum.fl_str_mv d9e2027d41e3f3fe5e21c481df99129b
33bcf8a438695e22f96ab239ee1377f3
3180509527553a40e9cbaeead2d2a33f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1793351125425979392