Estimativa do tensor de Ricci sobre dados discretos
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Pós-Graduação em Matemática
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://ri.ufs.br/jspui/handle/riufs/23173 |
Resumo: | The study of geometry in high-dimensional spaces, particularly in point clouds, presents challenges in the calculation and interpretation of geometric properties, such as the metric tensor and Ricci curvature. This work proposes an approach that integrates concepts from Riemannian geometry with machine learning tools to estimate these tensors in discrete data, building upon a finite difference-based method and extending it through an adaptation employing neural networks. The methodology was experimentally validated on two-dimensional surfaces, yielding results consistent with those of the reference work—that is, accurate estimates on surfaces with positive and constant curvature, but with limitations on surfaces with negative curvature. Meanwhile, experiments with the neural network-based adaptation showed inferior results when compared to the original method, though they were comparable, in certain aspects, to other exis- ting approaches, such as Ollivier-Ricci and Forman-Ricci curvatures. These results demonstrate the feasibility of the proposed approach and highlight important challenges to be addressed in future work. |
| id |
UFS-2_b1d4c72db3dd797583e6a6f161fdfad5 |
|---|---|
| oai_identifier_str |
oai:oai:ri.ufs.br:repo_01:riufs/23173 |
| network_acronym_str |
UFS-2 |
| network_name_str |
Repositório Institucional da UFS |
| repository_id_str |
|
| spelling |
Rodrigues, Lays Vanessa SantanaMiranda Junior, Gastão Florêncio2025-09-19T12:28:49Z2025-09-19T12:28:49Z2025-08-28RODRIGUES, Lays Vanessa Santana. Estimativa do tensor de Ricci sobre dados discretos. 2025. 73 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2025.https://ri.ufs.br/jspui/handle/riufs/23173The study of geometry in high-dimensional spaces, particularly in point clouds, presents challenges in the calculation and interpretation of geometric properties, such as the metric tensor and Ricci curvature. This work proposes an approach that integrates concepts from Riemannian geometry with machine learning tools to estimate these tensors in discrete data, building upon a finite difference-based method and extending it through an adaptation employing neural networks. The methodology was experimentally validated on two-dimensional surfaces, yielding results consistent with those of the reference work—that is, accurate estimates on surfaces with positive and constant curvature, but with limitations on surfaces with negative curvature. Meanwhile, experiments with the neural network-based adaptation showed inferior results when compared to the original method, though they were comparable, in certain aspects, to other exis- ting approaches, such as Ollivier-Ricci and Forman-Ricci curvatures. These results demonstrate the feasibility of the proposed approach and highlight important challenges to be addressed in future work.O estudo da geometria em espaços de alta dimensão, especialmente em nuvens de pontos, apresenta desafios no cálculo e na interpretação de propriedades geométricas, como o tensor métrico e a curvatura de Ricci. Este trabalho propõe uma abordagem que integra conceitos da geometria riemanniana com ferramentas de aprendizado de máquina para estimar esses tensores em dados discretos, baseando-se em um método construído com diferenças finitas e estendendo-o por meio de uma adaptação que emprega redes neurais. A metodologia foi validada experimentalmente em superfícies bidimensionais, produzindo resultados compatíveis com os do trabalho de referência, isto é, estimativas precisas em superfícies com curvatura positiva e constante, mas apresentando limitações em superfícies com curvatura negativa. Por sua vez, os experimentos com a adaptação baseada em redes neurais mostraram resultados inferiores quando comparado ao método original, mas comparáveis, em certos aspectos, a outras abordagens já existentes, como as curvaturas de Ollivier-Ricci e Forman-Ricci. Esses resultados demonstram a viabilidade da abordagem proposta e evidenciam desafios importantes a serem enfrentados em trabalhos futuros.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporMatemáticaGeometria riemannianaTensor de curvatura de RicciAprendizado de máquinaRedes neuraisRiemannian geometryRicci tensorMachine learningNeural networksCIENCIAS EXATAS E DA TERRA::MATEMATICAEstimativa do tensor de Ricci sobre dados discretosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em MatemáticaUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/23173/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALLAYS_VANESSA_SANTANA_RODRIGUES.pdfLAYS_VANESSA_SANTANA_RODRIGUES.pdfapplication/pdf9262872https://ri.ufs.br/jspui/bitstream/riufs/23173/2/LAYS_VANESSA_SANTANA_RODRIGUES.pdf580777d7d73df26c68a861fbc18178d3MD52riufs/231732025-09-19 09:28:54.607oai:oai:ri.ufs.br:repo_01:riufs/23173TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2025-09-19T12:28:54Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
| dc.title.pt_BR.fl_str_mv |
Estimativa do tensor de Ricci sobre dados discretos |
| title |
Estimativa do tensor de Ricci sobre dados discretos |
| spellingShingle |
Estimativa do tensor de Ricci sobre dados discretos Rodrigues, Lays Vanessa Santana Matemática Geometria riemanniana Tensor de curvatura de Ricci Aprendizado de máquina Redes neurais Riemannian geometry Ricci tensor Machine learning Neural networks CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Estimativa do tensor de Ricci sobre dados discretos |
| title_full |
Estimativa do tensor de Ricci sobre dados discretos |
| title_fullStr |
Estimativa do tensor de Ricci sobre dados discretos |
| title_full_unstemmed |
Estimativa do tensor de Ricci sobre dados discretos |
| title_sort |
Estimativa do tensor de Ricci sobre dados discretos |
| author |
Rodrigues, Lays Vanessa Santana |
| author_facet |
Rodrigues, Lays Vanessa Santana |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Rodrigues, Lays Vanessa Santana |
| dc.contributor.advisor1.fl_str_mv |
Miranda Junior, Gastão Florêncio |
| contributor_str_mv |
Miranda Junior, Gastão Florêncio |
| dc.subject.por.fl_str_mv |
Matemática Geometria riemanniana Tensor de curvatura de Ricci Aprendizado de máquina Redes neurais |
| topic |
Matemática Geometria riemanniana Tensor de curvatura de Ricci Aprendizado de máquina Redes neurais Riemannian geometry Ricci tensor Machine learning Neural networks CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.eng.fl_str_mv |
Riemannian geometry Ricci tensor Machine learning Neural networks |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
The study of geometry in high-dimensional spaces, particularly in point clouds, presents challenges in the calculation and interpretation of geometric properties, such as the metric tensor and Ricci curvature. This work proposes an approach that integrates concepts from Riemannian geometry with machine learning tools to estimate these tensors in discrete data, building upon a finite difference-based method and extending it through an adaptation employing neural networks. The methodology was experimentally validated on two-dimensional surfaces, yielding results consistent with those of the reference work—that is, accurate estimates on surfaces with positive and constant curvature, but with limitations on surfaces with negative curvature. Meanwhile, experiments with the neural network-based adaptation showed inferior results when compared to the original method, though they were comparable, in certain aspects, to other exis- ting approaches, such as Ollivier-Ricci and Forman-Ricci curvatures. These results demonstrate the feasibility of the proposed approach and highlight important challenges to be addressed in future work. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-09-19T12:28:49Z |
| dc.date.available.fl_str_mv |
2025-09-19T12:28:49Z |
| dc.date.issued.fl_str_mv |
2025-08-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
RODRIGUES, Lays Vanessa Santana. Estimativa do tensor de Ricci sobre dados discretos. 2025. 73 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2025. |
| dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/jspui/handle/riufs/23173 |
| identifier_str_mv |
RODRIGUES, Lays Vanessa Santana. Estimativa do tensor de Ricci sobre dados discretos. 2025. 73 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2025. |
| url |
https://ri.ufs.br/jspui/handle/riufs/23173 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.program.fl_str_mv |
Pós-Graduação em Matemática |
| dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe (UFS) |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
| instname_str |
Universidade Federal de Sergipe (UFS) |
| instacron_str |
UFS |
| institution |
UFS |
| reponame_str |
Repositório Institucional da UFS |
| collection |
Repositório Institucional da UFS |
| bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/23173/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/23173/2/LAYS_VANESSA_SANTANA_RODRIGUES.pdf |
| bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c 580777d7d73df26c68a861fbc18178d3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
| repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
| _version_ |
1851759419581267968 |