Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Martins, Thiago Rodrigues lattes
Orientador(a): Tanabe, Eduardo Hiromitsu lattes
Banca de defesa: Cancelier, Adriano, Missau, Juliano, Reisdörfer, Gustavo, Aguiar, Mônica Lopes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Centro de Tecnologia
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química
Departamento: Engenharia Química
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufsm.br/handle/1/30240
Resumo: Contamination of water resources by heavy metals and the increasing generation of polymeric waste are aggravating problems in modern society, capable of causing diverse and severe impacts on the environment and human health. Thus, alternatives for the removal of heavy metals from aqueous media and ways to reuse polymeric waste are crucial. This work covers two articles produced on the development of modified polymeric nanofibers for the removal of heavy metals from aqueous solutions. In the first article, recycled expanded polystyrene (EPS) nanofibers were produced using the centrifugal spinning method, followed by modification with chitosan (CS), generating nanofibers called EPS/CS. EPS/CS nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The results of the characterizations showed that the EPS/CS nanofibers had an average diameter of 806 nm, in addition to important functional groups in the adsorption of lead(II). Lead(II) adsorption experiments were performed with these nanofibers, including pH effect, adsorption kinetics, equilibrium isotherms and regeneration tests. The results showed that increasing the pH to 6 favored the removal of lead(II). The pseudo-second order model best fitted the kinetic data, while the AranovichDonohue model best described the equilibrium data, with the nanofibers presenting a maximum adsorption capacity of 137,35 mg g-1 . Thermodynamic parameters indicated a spontaneous, favorable, and endothermic process. After four cycles, the nanofibers maintained 63,04% of their original adsorption capacity. In another article discussed in this work, recycled polyethylene terephthalate (PET) nanofibers were modified with tannin (TN) using the centrifugal spinning method, generating nanofibers called PET/TN. After a crosslinking step with glutaraldehyde, the PET/TN nanofibers were also characterized by SEM, TGA and FTIR. The characterization results showed that the PET/TN nanofibers had an average diameter of 188 nm, in addition to functional groups that were crucial for lead(II) adsorption. Lead(II) adsorption experiments were also performed with these nanofibers, including pH effect, adsorption kinetics, equilibrium isotherms, and regeneration tests. The results showed that increasing the pH to 6 favored the removal of lead(II). The pseudo-first order model best fitted the kinetic data, while the Sips model best described the equilibrium data, with the nanofibers presenting a maximum adsorption capacity of 350,81 mg g-1 . Thermodynamic parameters indicated a spontaneous, favorable, and endothermic process. After four cycles, the nanofibers maintained 45.20% of their original adsorption capacity. The results of both articles point to recycled polymer nanofibers as excellent alternatives to heavy metal adsorption, in addition to reducing the disposal of polymeric waste in the environment, generating aggregated value nanomaterials.
id UFSM-20_12e6906ca689832fb3bce633c51b9037
oai_identifier_str oai:repositorio.ufsm.br:1/30240
network_acronym_str UFSM-20
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling 2023-09-19T12:02:52Z2023-09-19T12:02:52Z2023-08-17http://repositorio.ufsm.br/handle/1/30240Contamination of water resources by heavy metals and the increasing generation of polymeric waste are aggravating problems in modern society, capable of causing diverse and severe impacts on the environment and human health. Thus, alternatives for the removal of heavy metals from aqueous media and ways to reuse polymeric waste are crucial. This work covers two articles produced on the development of modified polymeric nanofibers for the removal of heavy metals from aqueous solutions. In the first article, recycled expanded polystyrene (EPS) nanofibers were produced using the centrifugal spinning method, followed by modification with chitosan (CS), generating nanofibers called EPS/CS. EPS/CS nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The results of the characterizations showed that the EPS/CS nanofibers had an average diameter of 806 nm, in addition to important functional groups in the adsorption of lead(II). Lead(II) adsorption experiments were performed with these nanofibers, including pH effect, adsorption kinetics, equilibrium isotherms and regeneration tests. The results showed that increasing the pH to 6 favored the removal of lead(II). The pseudo-second order model best fitted the kinetic data, while the AranovichDonohue model best described the equilibrium data, with the nanofibers presenting a maximum adsorption capacity of 137,35 mg g-1 . Thermodynamic parameters indicated a spontaneous, favorable, and endothermic process. After four cycles, the nanofibers maintained 63,04% of their original adsorption capacity. In another article discussed in this work, recycled polyethylene terephthalate (PET) nanofibers were modified with tannin (TN) using the centrifugal spinning method, generating nanofibers called PET/TN. After a crosslinking step with glutaraldehyde, the PET/TN nanofibers were also characterized by SEM, TGA and FTIR. The characterization results showed that the PET/TN nanofibers had an average diameter of 188 nm, in addition to functional groups that were crucial for lead(II) adsorption. Lead(II) adsorption experiments were also performed with these nanofibers, including pH effect, adsorption kinetics, equilibrium isotherms, and regeneration tests. The results showed that increasing the pH to 6 favored the removal of lead(II). The pseudo-first order model best fitted the kinetic data, while the Sips model best described the equilibrium data, with the nanofibers presenting a maximum adsorption capacity of 350,81 mg g-1 . Thermodynamic parameters indicated a spontaneous, favorable, and endothermic process. After four cycles, the nanofibers maintained 45.20% of their original adsorption capacity. The results of both articles point to recycled polymer nanofibers as excellent alternatives to heavy metal adsorption, in addition to reducing the disposal of polymeric waste in the environment, generating aggregated value nanomaterials.A contaminação de recursos hídricos por metais pesados e a vasta geração de resíduos poliméricos são problemas agravantes da sociedade atual, capazes de causar impactos diversos e severos para o meio ambiente e a saúde humana. Desta forma, alternativas de remoção de metais pesados de meios aquosos e formas de reaproveitar os resíduos poliméricos possuem grande importância. Este trabalho abrange dois artigos produzidos sobre o desenvolvimento de nanofibras poliméricas modificadas para remoção de metais pesados de soluções aquosas. No primeiro artigo, nanofibras de poliestireno expandido (EPS) reciclado foram produzidas a partir do método de centrifugal spinning e modificadas com quitosana (CS), gerando nanofibras denominadas EPS/CS. As nanofibras de EPS/CS foram caracterizadas por microscopia eletrônica de varredura (MEV), análise termogravimétrica (TGA) e espectroscopia de infravermelho por transformada de Fourier (FTIR). Os resultados das caracterizações apontaram que as nanofibras EPS/CS apresentaram diâmetro médio de 806 nm além de grupos funcionais importantes na adsorção de chumbo(II). Experimentos de adsorção de chumbo(II) foram realizados com estas nanofibras, incluindo efeito do pH, cinética de adsorção, isotermas de equilíbrio e testes de regeneração. Os resultados apontaram que o aumento de pH até 6 favoreceu a remoção de chumbo(II). O modelo de pseudo-segunda ordem melhor se ajustou aos dados cinéticos, enquanto o modelo de Aranovich-Donohue melhor descreveu os dados de equilíbrio, com as nanofibras apresentando capacidade de adsorção máxima de 137,35 mg g-1. Os parâmetros termodinâmicos apontaram um processo espontâneo, favorável e endotérmico. Após quatro ciclos, as nanofibras mantiveram 63,04% de sua capacidade original de adsorção. No segundo artigo deste trabalho, nanofibras de polietileno tereftalato (PET) reciclado foram produzidas a partir do método de centrifugal spinning e modificadas com tanino (TN), gerando nanofibras denominadas PET/TN. Após uma etapa de crosslinking com glutaraldeído, as nanofibras de PET/TN foram também caracterizadas por MEV, TGA e FTIR. Os resultados das caracterizações apontaram que as nanofibras PET/TN apresentaram diâmetro médio de 188 nm além de grupos funcionais cruciais para adsorção de chumbo(II). Experimentos de adsorção de chumbo(II) também foram realizados com estas nanofibras, incluindo o efeito do pH, a cinética de adsorção, as isotermas de equilíbrio e os testes de regeneração. Os resultados apontaram que o aumento de pH até 6 favoreceu a remoção de chumbo(II). O modelo de pseudo-primeira ordem ajustou-se melhor aos dados cinéticos, enquanto o modelo de Sips descreveu de forma mais precisa os dados de equilíbrio, com as nanofibras apresentando capacidade de adsorção máxima de 350,81 mg g-1. Os parâmetros termodinâmicos apontaram um processo espontâneo, favorável e endotérmico. Após quatro ciclos, as nanofibras preservaram 45,20% de sua capacidade original de adsorção. Os resultados de ambos os artigos apontam as nanofibras de polímero reciclado como excelentes alternativas à adsorção de chumbo(II), além de reduzirem a disposição de resíduos poliméricos no meio ambiente gerando nanomateriais de alto valor agregado.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal de Santa MariaCentro de TecnologiaPrograma de Pós-Graduação em Engenharia QuímicaUFSMBrasilEngenharia QuímicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessNanofibrasPolímeros recicladosAdsorçãoQuitosanaTaninoNanofibersRecycled polymersAdsorptionChitosanTanninCNPQ::ENGENHARIAS::ENGENHARIA QUIMICADesenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesadosDevelopment of nanofibers from recycled polymers for the removal of heavy metalsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTanabe, Eduardo Hiromitsuhttp://lattes.cnpq.br/9778700143605069Bertuol, Daniel AssumpçãoCancelier, AdrianoMissau, JulianoReisdörfer, GustavoAguiar, Mônica Lopeshttp://lattes.cnpq.br/4620183951020528Martins, Thiago Rodrigues300600000006600600600600600600600600b1b7f60b-aaa2-4374-9587-545c489aacb9a15fa23d-e80a-40c5-b665-9c6d3f3b49cafcabaa51-1ad1-439b-b057-9430cfe88209f7801b00-07e4-4ba6-9df2-64e8fc586316efa1249e-e940-4dbd-84be-7dd9eeb3e843e4269797-94b3-48e2-8b8c-50ba30d3b94aa0f202dc-798d-4bba-8f02-09fad6eb659freponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALTES_PPGEQ_2023_MARTINS_THIAGO.pdfTES_PPGEQ_2023_MARTINS_THIAGO.pdfDissertaçãoapplication/pdf3018574http://repositorio.ufsm.br/bitstream/1/30240/1/TES_PPGEQ_2023_MARTINS_THIAGO.pdf434c752657f707c2ac4d122ba01d5763MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-816http://repositorio.ufsm.br/bitstream/1/30240/3/license.txtf8fcb28efb1c8cf0dc096bec902bf4c4MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/30240/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD521/302402023-09-19 09:02:52.645oai:repositorio.ufsm.br:1/30240Q3JlYXRpdmUgQ29tbW9ucw==Repositório Institucionalhttp://repositorio.ufsm.br/PUBhttp://repositorio.ufsm.br/oai/requestopendoar:39132023-09-19T12:02:52Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados
dc.title.alternative.eng.fl_str_mv Development of nanofibers from recycled polymers for the removal of heavy metals
title Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados
spellingShingle Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados
Martins, Thiago Rodrigues
Nanofibras
Polímeros reciclados
Adsorção
Quitosana
Tanino
Nanofibers
Recycled polymers
Adsorption
Chitosan
Tannin
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados
title_full Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados
title_fullStr Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados
title_full_unstemmed Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados
title_sort Desenvolvimento de nanofibras a partir de polímeros reciclados para remoção de metais pesados
author Martins, Thiago Rodrigues
author_facet Martins, Thiago Rodrigues
author_role author
dc.contributor.advisor1.fl_str_mv Tanabe, Eduardo Hiromitsu
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9778700143605069
dc.contributor.advisor-co1.fl_str_mv Bertuol, Daniel Assumpção
dc.contributor.referee1.fl_str_mv Cancelier, Adriano
dc.contributor.referee2.fl_str_mv Missau, Juliano
dc.contributor.referee3.fl_str_mv Reisdörfer, Gustavo
dc.contributor.referee4.fl_str_mv Aguiar, Mônica Lopes
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4620183951020528
dc.contributor.author.fl_str_mv Martins, Thiago Rodrigues
contributor_str_mv Tanabe, Eduardo Hiromitsu
Bertuol, Daniel Assumpção
Cancelier, Adriano
Missau, Juliano
Reisdörfer, Gustavo
Aguiar, Mônica Lopes
dc.subject.por.fl_str_mv Nanofibras
Polímeros reciclados
Adsorção
Quitosana
Tanino
topic Nanofibras
Polímeros reciclados
Adsorção
Quitosana
Tanino
Nanofibers
Recycled polymers
Adsorption
Chitosan
Tannin
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Nanofibers
Recycled polymers
Adsorption
Chitosan
Tannin
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description Contamination of water resources by heavy metals and the increasing generation of polymeric waste are aggravating problems in modern society, capable of causing diverse and severe impacts on the environment and human health. Thus, alternatives for the removal of heavy metals from aqueous media and ways to reuse polymeric waste are crucial. This work covers two articles produced on the development of modified polymeric nanofibers for the removal of heavy metals from aqueous solutions. In the first article, recycled expanded polystyrene (EPS) nanofibers were produced using the centrifugal spinning method, followed by modification with chitosan (CS), generating nanofibers called EPS/CS. EPS/CS nanofibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The results of the characterizations showed that the EPS/CS nanofibers had an average diameter of 806 nm, in addition to important functional groups in the adsorption of lead(II). Lead(II) adsorption experiments were performed with these nanofibers, including pH effect, adsorption kinetics, equilibrium isotherms and regeneration tests. The results showed that increasing the pH to 6 favored the removal of lead(II). The pseudo-second order model best fitted the kinetic data, while the AranovichDonohue model best described the equilibrium data, with the nanofibers presenting a maximum adsorption capacity of 137,35 mg g-1 . Thermodynamic parameters indicated a spontaneous, favorable, and endothermic process. After four cycles, the nanofibers maintained 63,04% of their original adsorption capacity. In another article discussed in this work, recycled polyethylene terephthalate (PET) nanofibers were modified with tannin (TN) using the centrifugal spinning method, generating nanofibers called PET/TN. After a crosslinking step with glutaraldehyde, the PET/TN nanofibers were also characterized by SEM, TGA and FTIR. The characterization results showed that the PET/TN nanofibers had an average diameter of 188 nm, in addition to functional groups that were crucial for lead(II) adsorption. Lead(II) adsorption experiments were also performed with these nanofibers, including pH effect, adsorption kinetics, equilibrium isotherms, and regeneration tests. The results showed that increasing the pH to 6 favored the removal of lead(II). The pseudo-first order model best fitted the kinetic data, while the Sips model best described the equilibrium data, with the nanofibers presenting a maximum adsorption capacity of 350,81 mg g-1 . Thermodynamic parameters indicated a spontaneous, favorable, and endothermic process. After four cycles, the nanofibers maintained 45.20% of their original adsorption capacity. The results of both articles point to recycled polymer nanofibers as excellent alternatives to heavy metal adsorption, in addition to reducing the disposal of polymeric waste in the environment, generating aggregated value nanomaterials.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-09-19T12:02:52Z
dc.date.available.fl_str_mv 2023-09-19T12:02:52Z
dc.date.issued.fl_str_mv 2023-08-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/30240
url http://repositorio.ufsm.br/handle/1/30240
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 300600000006
dc.relation.confidence.fl_str_mv 600
600
600
600
600
600
600
600
dc.relation.authority.fl_str_mv b1b7f60b-aaa2-4374-9587-545c489aacb9
a15fa23d-e80a-40c5-b665-9c6d3f3b49ca
fcabaa51-1ad1-439b-b057-9430cfe88209
f7801b00-07e4-4ba6-9df2-64e8fc586316
efa1249e-e940-4dbd-84be-7dd9eeb3e843
e4269797-94b3-48e2-8b8c-50ba30d3b94a
a0f202dc-798d-4bba-8f02-09fad6eb659f
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Tecnologia
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia Química
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/30240/1/TES_PPGEQ_2023_MARTINS_THIAGO.pdf
http://repositorio.ufsm.br/bitstream/1/30240/3/license.txt
http://repositorio.ufsm.br/bitstream/1/30240/2/license_rdf
bitstream.checksum.fl_str_mv 434c752657f707c2ac4d122ba01d5763
f8fcb28efb1c8cf0dc096bec902bf4c4
4460e5956bc1d1639be9ae6146a50347
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv
_version_ 1794524361887055872