Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
Brasil Agronomia UFSM Programa de Pós-Graduação em Agricultura de Precisão Centro de Ciências Rurais |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/23562 |
Resumo: | Currently, there is a great use of remotely controlled aircraft in agriculture and the need to increasingly optimize the production of Brazilian crops. To this end, the work seeks to analyze the failures in sowing / planting in soybean crops from the interpretation of images obtained with this type of equipment. In this work, the images were obtained at flight heights of 60, 90 and 120 meters, and on four post-planting dates, 15, 22, 32 and 37 days after sowing, the processing was performed in the QGIS software generating images with the percentage of coverage by soybean plants. Analyzing the classified images it was possible to estimate the development of soybean plants, it was found that there was no significant difference between the flight heights, so the best time to evaluate sowing failures was 120 meters, as it allows a larger area covered on the same flight. The flight that best represented the coverage percentage of soybean plants was the fourth (37 after sowing), since it occurred right after the effect of a herbicide application making the classification more efficient without the presence of weeds. |
id |
UFSM_215eba88ff324dd0b2f4d6ca72bf40ad |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/23562 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remotoEstimation of seeding failures in soybean culture with images from non-crewed air vehiclesDroneAlta resolução espacialProcessamento digital de imagensAnálise estatísticaAgricultura de precisãoHigh spatial resolutionDigital image processingStatistical analysisPrecision agricultureCNPQ::CIENCIAS AGRARIAS::AGRONOMIACurrently, there is a great use of remotely controlled aircraft in agriculture and the need to increasingly optimize the production of Brazilian crops. To this end, the work seeks to analyze the failures in sowing / planting in soybean crops from the interpretation of images obtained with this type of equipment. In this work, the images were obtained at flight heights of 60, 90 and 120 meters, and on four post-planting dates, 15, 22, 32 and 37 days after sowing, the processing was performed in the QGIS software generating images with the percentage of coverage by soybean plants. Analyzing the classified images it was possible to estimate the development of soybean plants, it was found that there was no significant difference between the flight heights, so the best time to evaluate sowing failures was 120 meters, as it allows a larger area covered on the same flight. The flight that best represented the coverage percentage of soybean plants was the fourth (37 after sowing), since it occurred right after the effect of a herbicide application making the classification more efficient without the presence of weeds.Atualmente, destaca-se o grande uso de aeronaves controladas remotamente na agricultura e a necessidade de cada vez mais otimizar a produção das lavouras brasileiras. Com esse intuito, o trabalho busca analisar as falhas na semeadura/plantio em lavoura de soja a partir da interpretação de imagens obtidas com este tipo de equipamento. Neste trabalho, as imagens foram obtidas nas alturas de voo de 60, 90 e 120 metros, e em quatro datas pós-plantio, 15, 22, 32 e 37 dias após a semeadura, o processamento foi realizado no software QGIS gerando imagens com o percentual de cobertura pelas plantas de soja. Analisando as imagens classificadas foi possível estimar o desenvolvimento das plantas de soja, constatou-se que não houve diferença significativa entre as alturas de voo, sendo assim a melhor altura para avaliar as falhas de semeadura foi a de 120 metros, por possibilitar uma maior área coberta em um mesmo voo. O voo que melhor representou o percentual de cobertura das plantas de soja foi o quarto (37 após a semeadura), visto que ocorreu logo após o efeito de uma aplicação de herbicida tornando a classificação mais eficiente sem a presença de daninhas.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agricultura de PrecisãoCentro de Ciências RuraisSebem, Elódiohttp://lattes.cnpq.br/7879588106056349Miola, Alessandro CarvalhoVian, André LuísWouters, Jonathas Mateus2022-01-18T13:02:28Z2022-01-18T13:02:28Z2020-08-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/23562porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-02-04T18:43:06Zoai:repositorio.ufsm.br:1/23562Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2022-02-04T18:43:06Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto Estimation of seeding failures in soybean culture with images from non-crewed air vehicles |
title |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto |
spellingShingle |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto Wouters, Jonathas Mateus Drone Alta resolução espacial Processamento digital de imagens Análise estatística Agricultura de precisão High spatial resolution Digital image processing Statistical analysis Precision agriculture CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto |
title_full |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto |
title_fullStr |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto |
title_full_unstemmed |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto |
title_sort |
Estimativa de falhas em semeadura de soja (Glycine Max (L) Merrill) a partir de imagens de sensoriamento remoto |
author |
Wouters, Jonathas Mateus |
author_facet |
Wouters, Jonathas Mateus |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sebem, Elódio http://lattes.cnpq.br/7879588106056349 Miola, Alessandro Carvalho Vian, André Luís |
dc.contributor.author.fl_str_mv |
Wouters, Jonathas Mateus |
dc.subject.por.fl_str_mv |
Drone Alta resolução espacial Processamento digital de imagens Análise estatística Agricultura de precisão High spatial resolution Digital image processing Statistical analysis Precision agriculture CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Drone Alta resolução espacial Processamento digital de imagens Análise estatística Agricultura de precisão High spatial resolution Digital image processing Statistical analysis Precision agriculture CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
Currently, there is a great use of remotely controlled aircraft in agriculture and the need to increasingly optimize the production of Brazilian crops. To this end, the work seeks to analyze the failures in sowing / planting in soybean crops from the interpretation of images obtained with this type of equipment. In this work, the images were obtained at flight heights of 60, 90 and 120 meters, and on four post-planting dates, 15, 22, 32 and 37 days after sowing, the processing was performed in the QGIS software generating images with the percentage of coverage by soybean plants. Analyzing the classified images it was possible to estimate the development of soybean plants, it was found that there was no significant difference between the flight heights, so the best time to evaluate sowing failures was 120 meters, as it allows a larger area covered on the same flight. The flight that best represented the coverage percentage of soybean plants was the fourth (37 after sowing), since it occurred right after the effect of a herbicide application making the classification more efficient without the presence of weeds. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-26 2022-01-18T13:02:28Z 2022-01-18T13:02:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/23562 |
url |
http://repositorio.ufsm.br/handle/1/23562 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agricultura de Precisão Centro de Ciências Rurais |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agricultura de Precisão Centro de Ciências Rurais |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br |
_version_ |
1830834922102718464 |