Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Melos, Natália Duarte
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/001300000w448
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agricultura de Precisão
Colégio Politécnico da UFSM
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/29437
Resumo: The highlight in the Brazilian economy is agribusiness, specifically grain production, which takes place from north to south of the country. Farmers aim to increase their production efficiency with minimal input usage on the same cultivated area. Precision Agriculture aligns with this objective as an essential tool for detecting problems within the property and aiding in decision-making processes. However, some productivity variations cannot be explained solely by traditional mapping of variables; it is necessary to perform analyses with multiple variables to find indicators that contribute to understanding this scenario. The objective of this study was to define zones of productive potential through multivariate analysis for an agricultural cultivation area using data from various sources. The study was conducted in a commercial soybean field covering 35.40 hectares with a sampling grid of one point every two hectares, generating a database with altitude, clay content, soil fertility for the year 2018, fertilization, corrections, and productivity (basic data). These data, combined with remote sensing data (NDVI, NDRE, NDWI, and Surface Brightness Temperature) for the four subsequent harvests following the sampling, increased the degree of data utilization to intermediate and advanced levels. The mesh file was used to create Voronoi polygons, and the data was tabulated and subjected to cluster analysis. The polygons were grouped according to the dendrograms of each analysis based on the data acquisition degree. The productivity data from the four harvests were used to calculate the historical average productivity. The results formed the maps of zones of potential productivity for each dendrogram of each cut and were compared to identify the stabilization of zone formation. To choose the final map representing the management areas, the maps were subjected to map algebra to find the map of zones of potential productivity. Thus, the map that best represented the arrangement of zones of potential productivity belonged to the intermediate category for the 2nd cut of the dendrogram, comprising five zones of potential productivity ranging from very low to very high productivity. The results were satisfactory, and the objective of the study was achieved. The two methodologies for finding management zones and potential productivity converged to the same arrangement in this study, incorporating not only traditional Precision Agriculture data but also remote sensing data. However, in other analyses, it is possible to include data on variable seed rates, rainfall, electrical conductivity, and other variables.
id UFSM_3da51f46411e4816a584d86f589687f3
oai_identifier_str oai:repositorio.ufsm.br:1/29437
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolasUsing multivariate analysis for the identification of agricultural productive potential zonesSensoriamento remotoAnálise de clustersMapas de colheitaRemote sensingCluster analysisHarvest mapsCNPQ::CIENCIAS AGRARIAS::AGRONOMIAThe highlight in the Brazilian economy is agribusiness, specifically grain production, which takes place from north to south of the country. Farmers aim to increase their production efficiency with minimal input usage on the same cultivated area. Precision Agriculture aligns with this objective as an essential tool for detecting problems within the property and aiding in decision-making processes. However, some productivity variations cannot be explained solely by traditional mapping of variables; it is necessary to perform analyses with multiple variables to find indicators that contribute to understanding this scenario. The objective of this study was to define zones of productive potential through multivariate analysis for an agricultural cultivation area using data from various sources. The study was conducted in a commercial soybean field covering 35.40 hectares with a sampling grid of one point every two hectares, generating a database with altitude, clay content, soil fertility for the year 2018, fertilization, corrections, and productivity (basic data). These data, combined with remote sensing data (NDVI, NDRE, NDWI, and Surface Brightness Temperature) for the four subsequent harvests following the sampling, increased the degree of data utilization to intermediate and advanced levels. The mesh file was used to create Voronoi polygons, and the data was tabulated and subjected to cluster analysis. The polygons were grouped according to the dendrograms of each analysis based on the data acquisition degree. The productivity data from the four harvests were used to calculate the historical average productivity. The results formed the maps of zones of potential productivity for each dendrogram of each cut and were compared to identify the stabilization of zone formation. To choose the final map representing the management areas, the maps were subjected to map algebra to find the map of zones of potential productivity. Thus, the map that best represented the arrangement of zones of potential productivity belonged to the intermediate category for the 2nd cut of the dendrogram, comprising five zones of potential productivity ranging from very low to very high productivity. The results were satisfactory, and the objective of the study was achieved. The two methodologies for finding management zones and potential productivity converged to the same arrangement in this study, incorporating not only traditional Precision Agriculture data but also remote sensing data. However, in other analyses, it is possible to include data on variable seed rates, rainfall, electrical conductivity, and other variables.O destaque na economia brasileira é o agronegócio, em específico, a produção de grãos que é realizada de norte a sul do país. Os agricultores objetivam cada vez mais aumentar sua eficiência na produção com baixo uso de insumo na mesma porção de área cultivada. A Agricultura de Precisão vem de encontro com esse objetivo, pois é uma ferramenta essencial para detectar problemas dentro da propriedade e ajudar no momento de tomadas de decisão. Porém, alguns problemas de variação na produtividade não se explicam apenas com o mapeamento tradicional das variáveis, é necessário realizar análises com múltiplas variáveis para encontrar os indicativos que colaborem no entendimento deste cenário. O objetivo deste trabalho foi realizar uma definição de zonas de potencial produtivo através de análise multivariada para uma área de cultivo agrícola com dados de diversas fontes. O trabalho foi realizado em uma lavoura comercial de 35,40 ha de soja com grid amostral de um ponto a cada dois hectares, gerando um banco de dados com altitude, argila, fertilidade do solo do ano de 2018, adubação, correções, produtividade (dados básicos) que aliados a dados de sensoriamento remoto (NDVI, NDRE, NDWI e Temperatura de Brilho da Superfície) para as quatro safras subsequentes à amostragem, elevaram o grau de utilização de dados a pré-intermediário e avançado. O arquivo da malha foi utilizado para criar os polígonos de voronoi e os dados foram tabulados e submetidos à análise de cluster. Os polígonos foram agrupados conforme os dendrogramas de cada análise de acordo com o grau de obtenção de dados. Os dados de produtividade das quatro safras foram utilizados para realizar o cálculo da produtividade média histórica. Os resultados compuseram os mapas de zonas de potencial produtividade para cada dendrograma de cada corte e foram comparados para identificar a estabilização da formação de zonas. Para escolha do mapa final para representar as áreas de manejo, os mapas foram submetidos a álgebra de mapas para encontrar o mapa de zonas de potencial produtivo. Com isso o mapa que melhor configurou o arranjo de zonas de potencial produtivo foi da categoria intermediário para 2º corte do dendrograma, cinco zonas de potencial produtivo, variando de muito baixa produtividade a muito alta produtividade. Os resultados foram satisfatórios e o objetivo do trabalho foi alcançado, as duas metodologias para encontrar as zonas de manejo e potencial produtivo conseguiram convergir para o mesmo arranjo, neste estudo buscou trabalhar com, além dos dados tradicionais da AP com dados de sensoriamento remoto. Porém, em outras análises é possível agregar dados de taxa variada de semente, pluviosidade, condutividade elétrica e outros IV.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agricultura de PrecisãoColégio Politécnico da UFSMAmaral, Lúcio de Paulahttp://lattes.cnpq.br/6612592358172016Kayser, Luiz PatricSebem, ElódioMoraes, Bibiana SilveiraMelos, Natália Duarte2023-06-15T14:24:49Z2023-06-15T14:24:49Z2023-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/29437ark:/26339/001300000w448porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-06-15T14:24:49Zoai:repositorio.ufsm.br:1/29437Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2023-06-15T14:24:49Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas
Using multivariate analysis for the identification of agricultural productive potential zones
title Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas
spellingShingle Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas
Melos, Natália Duarte
Sensoriamento remoto
Análise de clusters
Mapas de colheita
Remote sensing
Cluster analysis
Harvest maps
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas
title_full Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas
title_fullStr Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas
title_full_unstemmed Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas
title_sort Uso de análise multivariada para identificação de zonas de potenciais produtivos agrícolas
author Melos, Natália Duarte
author_facet Melos, Natália Duarte
author_role author
dc.contributor.none.fl_str_mv Amaral, Lúcio de Paula
http://lattes.cnpq.br/6612592358172016
Kayser, Luiz Patric
Sebem, Elódio
Moraes, Bibiana Silveira
dc.contributor.author.fl_str_mv Melos, Natália Duarte
dc.subject.por.fl_str_mv Sensoriamento remoto
Análise de clusters
Mapas de colheita
Remote sensing
Cluster analysis
Harvest maps
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic Sensoriamento remoto
Análise de clusters
Mapas de colheita
Remote sensing
Cluster analysis
Harvest maps
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description The highlight in the Brazilian economy is agribusiness, specifically grain production, which takes place from north to south of the country. Farmers aim to increase their production efficiency with minimal input usage on the same cultivated area. Precision Agriculture aligns with this objective as an essential tool for detecting problems within the property and aiding in decision-making processes. However, some productivity variations cannot be explained solely by traditional mapping of variables; it is necessary to perform analyses with multiple variables to find indicators that contribute to understanding this scenario. The objective of this study was to define zones of productive potential through multivariate analysis for an agricultural cultivation area using data from various sources. The study was conducted in a commercial soybean field covering 35.40 hectares with a sampling grid of one point every two hectares, generating a database with altitude, clay content, soil fertility for the year 2018, fertilization, corrections, and productivity (basic data). These data, combined with remote sensing data (NDVI, NDRE, NDWI, and Surface Brightness Temperature) for the four subsequent harvests following the sampling, increased the degree of data utilization to intermediate and advanced levels. The mesh file was used to create Voronoi polygons, and the data was tabulated and subjected to cluster analysis. The polygons were grouped according to the dendrograms of each analysis based on the data acquisition degree. The productivity data from the four harvests were used to calculate the historical average productivity. The results formed the maps of zones of potential productivity for each dendrogram of each cut and were compared to identify the stabilization of zone formation. To choose the final map representing the management areas, the maps were subjected to map algebra to find the map of zones of potential productivity. Thus, the map that best represented the arrangement of zones of potential productivity belonged to the intermediate category for the 2nd cut of the dendrogram, comprising five zones of potential productivity ranging from very low to very high productivity. The results were satisfactory, and the objective of the study was achieved. The two methodologies for finding management zones and potential productivity converged to the same arrangement in this study, incorporating not only traditional Precision Agriculture data but also remote sensing data. However, in other analyses, it is possible to include data on variable seed rates, rainfall, electrical conductivity, and other variables.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-15T14:24:49Z
2023-06-15T14:24:49Z
2023-03-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/29437
dc.identifier.dark.fl_str_mv ark:/26339/001300000w448
url http://repositorio.ufsm.br/handle/1/29437
identifier_str_mv ark:/26339/001300000w448
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agricultura de Precisão
Colégio Politécnico da UFSM
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agricultura de Precisão
Colégio Politécnico da UFSM
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153455002550272