Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Batista, Fábio de Jesus
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/0013000013qxb
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Recursos Florestais e Engenharia Florestal
UFSM
Programa de Pós-Graduação em Engenharia Florestal
Centro de Ciências Rurais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/19024
Resumo: The aim was to estimate the volume (VT) and biomass (BA) of Paricá plantations with machine learning from the images of MSI/SENTINEL-2A, in Ulianópolis, Pará. In three productive areas (PO2, CAP2, and PO) of the species, 56 sample units (UAs) were installed for the forest inventory. The productive capacity was evaluated by the site index (IS) based on ANATRO of 28 dominant trees. Covariance analysis was applied on the IS model. Soil samples were collected from 0-20cm (chemical) and 20-40cm (physical). Three UAs per area were randomized for the harvesting and cubic scaling of the trees. BA was performed by the direct method, considering 10 trees Dg per stand. The T22MHA scene was downloaded from 26/07/2016. In Qgis, a 1A product was generated consisting of stack of bands B2 to B12. In 47 UAs, the reflectance of pixel/band was extracted for the calculation of the vegetation index (IV). GLM was applied to model VT. The estimation of BA was done from the FEBmean. The prediction of VT and BA by the sensor considered 50 IVs and 12 bands, where by cross-validation, the most accurate algorithm was defined among the tested ones (Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN)). The pre-selection of the 10 most important variables for the spatialization of VTpredicted and BApredicted was performed by the RF. The analysis was done by RStudio 3.5.2. The precision of the inventory was <10% in CAP2 and PO areas, and in PO2 was 13.50%. For the IS, sample errors occurred of 15%, 9%, and 11% for PO2, CAP2, and PO areas, respectively. The model height-age of Schumacher, =3,4531 , was adjusted for GLM from the Gama-Identity distribution. The sites were divided into high (21 to 25m), medium (19 to 21m), and low (15 to 19m) productivity. The high productivity was registered in 80% of the UAs of CAP2, 50% of PO2, and 8% of PO. From the 36º month-old, different growth rate was verified. The covariance analysis differentiates the sites more (PO2 and CAP2) and less (PO) productive. The topographic characteristics, the presence of more clay and moderate soil acidity were relevant to turn CAP2 more conducive to the productivity of the species. The function for the estimation of VT in PO2 (88.96m³.ha-1 ± 14.50) and CAP2 (152.35 m³.ha-1 ± 16.45) was in Naslund – Gaussian. The function for VT in PO (139.37m³.ha-1 ± 28.41) was Meyer – Gaussian. The stem contributed with 86.54% of BA, branches and leaves participated with 8.28% and 5.18%. The BA registered for PO2, CAP2, and PO were 34,53ton.ha-1 ± 5,63; 56,54ton.ha-1 ± 7,75; and 51,93ton.ha-1 ± 11,95, respectively. The comparisons between VTobserved and VTpredicted, defined by ANN showed similarities in CAP2 and in PO. The comparisons between BAobserved and BApredicited calculated by RF showed proportionality in CAP2. The most precise estimation of VT and BA occurred to CAP2. The differences in PO2 and PO do not reflect a statistical problem, but rather spectral mixtures.
id UFSM_53090911e4dbf1e7ebe7f056a10f2f7d
oai_identifier_str oai:repositorio.ufsm.br:1/19024
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2Productive capacity, estimation of volume and biomass in Schizolobium parahyba var. amazonicum plantations using sentinel 2 imagesAlgoritmo de aprendizado de máquinasÍndice de vegetaçãoParicáVolume de madeiraUlianópolisMachine learning algorithmVegetation indexVolume of timberCNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTALThe aim was to estimate the volume (VT) and biomass (BA) of Paricá plantations with machine learning from the images of MSI/SENTINEL-2A, in Ulianópolis, Pará. In three productive areas (PO2, CAP2, and PO) of the species, 56 sample units (UAs) were installed for the forest inventory. The productive capacity was evaluated by the site index (IS) based on ANATRO of 28 dominant trees. Covariance analysis was applied on the IS model. Soil samples were collected from 0-20cm (chemical) and 20-40cm (physical). Three UAs per area were randomized for the harvesting and cubic scaling of the trees. BA was performed by the direct method, considering 10 trees Dg per stand. The T22MHA scene was downloaded from 26/07/2016. In Qgis, a 1A product was generated consisting of stack of bands B2 to B12. In 47 UAs, the reflectance of pixel/band was extracted for the calculation of the vegetation index (IV). GLM was applied to model VT. The estimation of BA was done from the FEBmean. The prediction of VT and BA by the sensor considered 50 IVs and 12 bands, where by cross-validation, the most accurate algorithm was defined among the tested ones (Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN)). The pre-selection of the 10 most important variables for the spatialization of VTpredicted and BApredicted was performed by the RF. The analysis was done by RStudio 3.5.2. The precision of the inventory was <10% in CAP2 and PO areas, and in PO2 was 13.50%. For the IS, sample errors occurred of 15%, 9%, and 11% for PO2, CAP2, and PO areas, respectively. The model height-age of Schumacher, =3,4531 , was adjusted for GLM from the Gama-Identity distribution. The sites were divided into high (21 to 25m), medium (19 to 21m), and low (15 to 19m) productivity. The high productivity was registered in 80% of the UAs of CAP2, 50% of PO2, and 8% of PO. From the 36º month-old, different growth rate was verified. The covariance analysis differentiates the sites more (PO2 and CAP2) and less (PO) productive. The topographic characteristics, the presence of more clay and moderate soil acidity were relevant to turn CAP2 more conducive to the productivity of the species. The function for the estimation of VT in PO2 (88.96m³.ha-1 ± 14.50) and CAP2 (152.35 m³.ha-1 ± 16.45) was in Naslund – Gaussian. The function for VT in PO (139.37m³.ha-1 ± 28.41) was Meyer – Gaussian. The stem contributed with 86.54% of BA, branches and leaves participated with 8.28% and 5.18%. The BA registered for PO2, CAP2, and PO were 34,53ton.ha-1 ± 5,63; 56,54ton.ha-1 ± 7,75; and 51,93ton.ha-1 ± 11,95, respectively. The comparisons between VTobserved and VTpredicted, defined by ANN showed similarities in CAP2 and in PO. The comparisons between BAobserved and BApredicited calculated by RF showed proportionality in CAP2. The most precise estimation of VT and BA occurred to CAP2. The differences in PO2 and PO do not reflect a statistical problem, but rather spectral mixtures.Fundação Amazônia de Amaparo a Estudos e Pesquisas, FAPESPAObjetivou-se a estimativa do volume (VT) e da biomassa (BA) de plantações de Paricá, com uso de aprendizado de máquinas, a partir de imagens MSI/SENTINEL-2A, Ulianópolis, Pará. Em três áreas (PO2, CAP2 e PO) produtoras da espécie foram instaladas 56 unidades de amostras (UA’s) para o inventário. A capacidade produtiva foi avaliada pelo índice de sítio (IS), com base na ANATRO de 28 árvores dominantes. Sobre o modelo de IS foi aplicada a análise de covariância. As amostras de solo foram coletadas de 0-20cm (química) e 20-40cm (física). Foram aleatorizadas três UA’s por área para a realização do abate e cubagem rigorosa das árvores. A BA foi realizada pelo método direto, considerando 10 árvores Dg por povoamento. Foi realizado download da cena T22MHA, de 26/07/2016. No Qgis foi gerado um produto 1A composto pela pilha de bandas B2 a B12. Em 47 UA’s foram extraídos a reflectância do pixel/banda, para o cálculo dos índices de vegetação (IV). Para modelagem do VT foi aplicada a GLM. A estimação da BA foi feita a partir do FEBmédio. A predição do VT e da BA pelo sensor considerou 50 IV’s e 12 bandas, onde por validação cruzada, definiu-se o algoritmo mais apropriado dentre os testados (Random Forest (RF), Suport Vector Machine (SVM) e Artificial Neural Network (ANN)). Pelo RF ocorreu a pré-seleção das 10 variáveis mais importantes para a espacialização do VTestimado e BAestimada. As análises foram feitas no RStudio 3.5.2. A precisão do inventário foi < 10% nas áreas CAP2 e PO, e em PO2 foi de 13,50%. Para o IS ocorreram erros de amostragem de 15%, 9% e 11% para as áreas PO2, CAP2 e PO, respectivamente. O modelo alturaidade de Schumacher, = 3,4531 , , foi ajustado por GLM, a partir da distribuição Gama – Identidade. Os sítios foram divididos em alta (21 a 25m), média (19 a 21m) e baixa (15 a 19m) produtividade. A alta produtividade foi registrada em 80% das UA’s de CAP2, 50% de PO2 e 8% de PO. A partir do 36º mês de idade, verificou-se diferentes taxas de crescimento. A análise de covariâncias distinguiu os sítios mais (PO2 e CAP2) e menos (PO) produtivos. As características topográficas, a presença de mais argila e a moderada acidez do solo foram relevantes para tornar CAP2 mais propício à produtividade da espécie. A função para estimação do VT em PO2 (88,96m3.ha-1 ± 14,50) e CAP2 (152,35m3.ha-1 ± 16,45) foi de Naslund – gaussiana. A função para VT em PO (139,37m3.ha-1 ± 28,41) foi de Meyer – gaussiana. O fuste contribuiu com 86,54% da BA, os galhos e folhas participaram com 8,28% e 5,18%. A BA registrada para PO2, CAP2 e PO foi de 34,53ton.ha-1 ± 5,63; 56,54ton.ha-1 ± 7,75; e 51,93ton.ha-1 ± 11,95, respectivamente. As comparações entre os VTobservado e VTestimado, definido pela ANN, demonstraram semelhanças em CAP2 e em PO. As comparações entre BAobservada e BAestimada, calculada pela RF, revelou proporcionalidade apenas em CAP2. As estimações mais precisas de VT e BA ocorreram para CAP2. As diferenças em PO2 e PO, não refletem um problema de ordem estatística, mas sim de misturas espectrais.Universidade Federal de Santa MariaBrasilRecursos Florestais e Engenharia FlorestalUFSMPrograma de Pós-Graduação em Engenharia FlorestalCentro de Ciências RuraisPereira, Rudiney Soareshttp://lattes.cnpq.br/9479801378014588Dalla Corte, Ana Paulahttp://lattes.cnpq.br/9528175326712747Silva, Emanuel Araújohttp://lattes.cnpq.br/2765651276275384Sanquetta, Carlos Robertohttp://lattes.cnpq.br/9641517111540508Amaral, Lúcio de Paulahttp://lattes.cnpq.br/6612592358172016Batista, Fábio de Jesus2019-11-22T16:14:12Z2019-11-22T16:14:12Z2019-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/19024ark:/26339/0013000013qxbporAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-11-23T06:02:46Zoai:repositorio.ufsm.br:1/19024Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2019-11-23T06:02:46Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2
Productive capacity, estimation of volume and biomass in Schizolobium parahyba var. amazonicum plantations using sentinel 2 images
title Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2
spellingShingle Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2
Batista, Fábio de Jesus
Algoritmo de aprendizado de máquinas
Índice de vegetação
Paricá
Volume de madeira
Ulianópolis
Machine learning algorithm
Vegetation index
Volume of timber
CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
title_short Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2
title_full Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2
title_fullStr Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2
title_full_unstemmed Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2
title_sort Capacidade produtiva, estimativa de volume e biomassa em plantações de Schizolobium parahyba var. amazonicum com o uso de imagens sentinel 2
author Batista, Fábio de Jesus
author_facet Batista, Fábio de Jesus
author_role author
dc.contributor.none.fl_str_mv Pereira, Rudiney Soares
http://lattes.cnpq.br/9479801378014588
Dalla Corte, Ana Paula
http://lattes.cnpq.br/9528175326712747
Silva, Emanuel Araújo
http://lattes.cnpq.br/2765651276275384
Sanquetta, Carlos Roberto
http://lattes.cnpq.br/9641517111540508
Amaral, Lúcio de Paula
http://lattes.cnpq.br/6612592358172016
dc.contributor.author.fl_str_mv Batista, Fábio de Jesus
dc.subject.por.fl_str_mv Algoritmo de aprendizado de máquinas
Índice de vegetação
Paricá
Volume de madeira
Ulianópolis
Machine learning algorithm
Vegetation index
Volume of timber
CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
topic Algoritmo de aprendizado de máquinas
Índice de vegetação
Paricá
Volume de madeira
Ulianópolis
Machine learning algorithm
Vegetation index
Volume of timber
CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
description The aim was to estimate the volume (VT) and biomass (BA) of Paricá plantations with machine learning from the images of MSI/SENTINEL-2A, in Ulianópolis, Pará. In three productive areas (PO2, CAP2, and PO) of the species, 56 sample units (UAs) were installed for the forest inventory. The productive capacity was evaluated by the site index (IS) based on ANATRO of 28 dominant trees. Covariance analysis was applied on the IS model. Soil samples were collected from 0-20cm (chemical) and 20-40cm (physical). Three UAs per area were randomized for the harvesting and cubic scaling of the trees. BA was performed by the direct method, considering 10 trees Dg per stand. The T22MHA scene was downloaded from 26/07/2016. In Qgis, a 1A product was generated consisting of stack of bands B2 to B12. In 47 UAs, the reflectance of pixel/band was extracted for the calculation of the vegetation index (IV). GLM was applied to model VT. The estimation of BA was done from the FEBmean. The prediction of VT and BA by the sensor considered 50 IVs and 12 bands, where by cross-validation, the most accurate algorithm was defined among the tested ones (Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN)). The pre-selection of the 10 most important variables for the spatialization of VTpredicted and BApredicted was performed by the RF. The analysis was done by RStudio 3.5.2. The precision of the inventory was <10% in CAP2 and PO areas, and in PO2 was 13.50%. For the IS, sample errors occurred of 15%, 9%, and 11% for PO2, CAP2, and PO areas, respectively. The model height-age of Schumacher, =3,4531 , was adjusted for GLM from the Gama-Identity distribution. The sites were divided into high (21 to 25m), medium (19 to 21m), and low (15 to 19m) productivity. The high productivity was registered in 80% of the UAs of CAP2, 50% of PO2, and 8% of PO. From the 36º month-old, different growth rate was verified. The covariance analysis differentiates the sites more (PO2 and CAP2) and less (PO) productive. The topographic characteristics, the presence of more clay and moderate soil acidity were relevant to turn CAP2 more conducive to the productivity of the species. The function for the estimation of VT in PO2 (88.96m³.ha-1 ± 14.50) and CAP2 (152.35 m³.ha-1 ± 16.45) was in Naslund – Gaussian. The function for VT in PO (139.37m³.ha-1 ± 28.41) was Meyer – Gaussian. The stem contributed with 86.54% of BA, branches and leaves participated with 8.28% and 5.18%. The BA registered for PO2, CAP2, and PO were 34,53ton.ha-1 ± 5,63; 56,54ton.ha-1 ± 7,75; and 51,93ton.ha-1 ± 11,95, respectively. The comparisons between VTobserved and VTpredicted, defined by ANN showed similarities in CAP2 and in PO. The comparisons between BAobserved and BApredicited calculated by RF showed proportionality in CAP2. The most precise estimation of VT and BA occurred to CAP2. The differences in PO2 and PO do not reflect a statistical problem, but rather spectral mixtures.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-22T16:14:12Z
2019-11-22T16:14:12Z
2019-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/19024
dc.identifier.dark.fl_str_mv ark:/26339/0013000013qxb
url http://repositorio.ufsm.br/handle/1/19024
identifier_str_mv ark:/26339/0013000013qxb
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Recursos Florestais e Engenharia Florestal
UFSM
Programa de Pós-Graduação em Engenharia Florestal
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Recursos Florestais e Engenharia Florestal
UFSM
Programa de Pós-Graduação em Engenharia Florestal
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153488710074368