Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Sangoi, Daniely Vaz da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/001300000p9t9
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Ciência do Solo
Centro de Ciências Rurais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/29565
Resumo: Careful and sustainable management of vineyard soils is fundamental to the success of vineyards. These areas have been faced with high levels of available copper (Cu) and zinc (Zn) in the soil, as a result of the frequent applications of fungicides based on these elements. This can result in high levels in the soil, resulting in toxicity to plants, also runoff and reach riverbeds, and even leach and reach groundwater. Soil collection and analysis are essential tools to determine the Cu and Zn content available in the soil. However, routine laboratory analyzes are characterized by the destruction of samples and generate chemical residues, which harm the environment if not disposed of correctly. Spectroscopy in the visible, near-infrared and shortwave electromagnetic spectrum (Vis-NIR-SWIR) combined with machine learning methods has shown great advantages and important potential as a technique for predicting soil clay and organic carbon contents. In the scientific and technical field, there is a demand for research related to Vis-NIR-SWIR spectroscopy studies related to other soil attributes, such as Cu and Zn. Therefore, this thesis explores the Vis-NIR-SWIR spectroscopy technique combined with machine learning methods to develop spectral prediction models for available Cu and Zn contents in vineyard soils. The literature shows that the predictive capacity of the models is associated with the characteristics of the soil spectral data and the machine learning method used in the predictive modeling. Therefore, it is fundamental to evaluate the characteristics of the spectral curves, pre-processing and machine learning method in data sets, composed of soils with variation in physical, chemical and mineralogical characteristics, as in the case of subtropical soils in the present study. There is also a need to test the effect of the strategy of stratifying general databases into regional sets on the calibration of prediction models. In STUDY 1, initially, 1482 soil samples were collected from different vineyards in three grape producing regions in the state of Rio Grande do Sul (RS), Brazil: Campos de Cima da Serra, Serra Gaúcha and Campanha Gaúcha. These regions have different levels of Cu and Zn in the soil. Samples were analyzed chemically by Mehlich-1 and spectrally by Vis-NIR-SWIR. The machine learning techniques used were Partial Least Square Regression (PLSR), Cubist (CUB), Support Vector Machine (SVM) and Random Forest (RF). The results identified relevant information in the spectral signatures, which were used to spectrally analyze the available Cu and Zn contents in the soil. It was possible to perform the predictions of these elements due to the inferences with spectrally active soil properties. The highest accuracies were obtained by combining RF with pre-processed spectra using the Savitzky-Golay first derivative technique. As for STUDY 2, the total database (n=1482) was separated into regional subsets based on specific characteristics of the regions where the soil samples were collected. The spectral models were calibrated and after external validation was carried out. With this strategy, it was possible to indirectly estimate the available Cu and Zn contents, with greater accuracy of predictions being observed for models calibrated with regional subsets.
id UFSM_5605912d6a12f4fe8413833db5348292
oai_identifier_str oai:repositorio.ufsm.br:1/29565
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do BrasilVis-NIR-SWIR spectroscopy combined with machine learning for copper and zinc prediction in vineyard soils in southern BrazilSensoriamento remoto hiperespectralMetais pesadosPré-processamentoAprendizado de máquinaModelo de predição global e regionalHyperspectral remote sensingHeavy metalsPre-processingMachine learningGlobal and regional prediction modelCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLOCareful and sustainable management of vineyard soils is fundamental to the success of vineyards. These areas have been faced with high levels of available copper (Cu) and zinc (Zn) in the soil, as a result of the frequent applications of fungicides based on these elements. This can result in high levels in the soil, resulting in toxicity to plants, also runoff and reach riverbeds, and even leach and reach groundwater. Soil collection and analysis are essential tools to determine the Cu and Zn content available in the soil. However, routine laboratory analyzes are characterized by the destruction of samples and generate chemical residues, which harm the environment if not disposed of correctly. Spectroscopy in the visible, near-infrared and shortwave electromagnetic spectrum (Vis-NIR-SWIR) combined with machine learning methods has shown great advantages and important potential as a technique for predicting soil clay and organic carbon contents. In the scientific and technical field, there is a demand for research related to Vis-NIR-SWIR spectroscopy studies related to other soil attributes, such as Cu and Zn. Therefore, this thesis explores the Vis-NIR-SWIR spectroscopy technique combined with machine learning methods to develop spectral prediction models for available Cu and Zn contents in vineyard soils. The literature shows that the predictive capacity of the models is associated with the characteristics of the soil spectral data and the machine learning method used in the predictive modeling. Therefore, it is fundamental to evaluate the characteristics of the spectral curves, pre-processing and machine learning method in data sets, composed of soils with variation in physical, chemical and mineralogical characteristics, as in the case of subtropical soils in the present study. There is also a need to test the effect of the strategy of stratifying general databases into regional sets on the calibration of prediction models. In STUDY 1, initially, 1482 soil samples were collected from different vineyards in three grape producing regions in the state of Rio Grande do Sul (RS), Brazil: Campos de Cima da Serra, Serra Gaúcha and Campanha Gaúcha. These regions have different levels of Cu and Zn in the soil. Samples were analyzed chemically by Mehlich-1 and spectrally by Vis-NIR-SWIR. The machine learning techniques used were Partial Least Square Regression (PLSR), Cubist (CUB), Support Vector Machine (SVM) and Random Forest (RF). The results identified relevant information in the spectral signatures, which were used to spectrally analyze the available Cu and Zn contents in the soil. It was possible to perform the predictions of these elements due to the inferences with spectrally active soil properties. The highest accuracies were obtained by combining RF with pre-processed spectra using the Savitzky-Golay first derivative technique. As for STUDY 2, the total database (n=1482) was separated into regional subsets based on specific characteristics of the regions where the soil samples were collected. The spectral models were calibrated and after external validation was carried out. With this strategy, it was possible to indirectly estimate the available Cu and Zn contents, with greater accuracy of predictions being observed for models calibrated with regional subsets.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA administração cuidadosa e sustentável dos solos dos vinhedos é fundamental para o sucesso das vinhas. Essas áreas têm-se deparado com elevados teores disponíveis de cobre (Cu) e zinco (Zn) nos solos, consequência das frequentes aplicações de fungicidas à base desses elementos. Isso pode resultar em teores elevados no solo, resultando em toxicidade para as plantas, também escoar superficialmente e chegar aos leitos dos rios, e até mesmo lixiviar e alcançar águas subterrâneas. A coleta e análise de solo são ferramentas imprescindíveis para determinar o teor de Cu e Zn disponível no solo. Porém, as análises laboratoriais de rotina são caracterizadas pela destruição das amostras e geram resíduos químicos, que prejudicam o meio ambiente se não descartados corretamente. A espectroscopia na região do espectro eletromagnético do visível, infravermelho próximo e de ondas curtas (Vis-NIR-SWIR) combinada aos métodos de machine learning, tem apresentado grandes vantagens e importante potencial como técnica para predição dos teores de argila e carbono orgânico do solo. No meio científico e técnico, há uma demanda por pesquisas relacionadas a estudos de espectroscopia Vis-NIR-SWIR relacionados a outros atributos do solo, como o Cu e Zn. Com isso, esta tese explora a técnica de espectroscopia Vis-NIR-SWIR combinada a métodos de machine learning para desenvolver modelos espectrais de predição para os teores disponíveis de Cu e Zn em solos de vinhedos. A literatura mostra que a capacidade preditiva dos modelos está associada às características dos dados espectrais do solo e método de machine learning empregado na modelagem preditiva. Por isso, é fundamental avaliar as características das curvas espectrais, pré-processamento e método de machine learning em conjuntos de dados, compostos por solos com variação nas características físicas, químicas e mineralógicas, a exemplo dos solos subtropicais do presente estudo. Também existe a necessidade de testar o efeito da estratégia de estratificação de bancos de dados gerais em conjuntos regionais na calibração de modelos de predição. No ESTUDO 1, inicialmente, foram coletadas 1482 amostras de solos em diferentes vinhedos de três regiões produtoras de uvas do estado do Rio Grande do Sul (RS), Brasil: Campos de Cima da Serra, Serra Gaúcha e Campanha Gaúcha. Essas regiões apresentam diferentes teores de Cu e Zn no solo. As amostras foram analisadas quimicamente por Mehlich-1 e espectralmente por Vis-NIR-SWIR. As técnicas de machine learning utilizadas foram Partial Least Square Regression (PLSR), Cubist (CUB), Support Vector Machine (SVM) e Random Forest (RF). Os resultados identificaram informações relevantes nas assinaturas espectrais, as quais foram utilizadas para analisar espectralmente os teores disponíveis de Cu e Zn no solo. Conseguiu-se realizar as predições destes elementos devido as inferências com propriedades do solo espectralmente ativas. As maiores acurácias foram obtidas combinando RF com os espectros pré-processados pela técnica da primeira derivada de Savitzky-Golay. Já para o ESTUDO 2, separou-se o banco de dados total (n=1482) em subconjuntos regionais com base em características específicas das regiões onde foram coletadas as amostras de solo. Os modelos espectrais foram calibrados e após realizado a validação externa. Com essa estratégia foi possível realizar a estimativa indireta dos teores disponíveis de Cu e Zn, sendo observado maiores acurácias das predições para os modelos calibrados com subconjuntos regionais.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Ciência do SoloCentro de Ciências RuraisDalmolin, Ricardo Simão Dinizhttp://lattes.cnpq.br/3735884911693854Bueno, Jean Michel MouraMiguel, PabloTiecher, TalesPedron, Fabrício de AraújoSchenato, Ricardo BergamoSangoi, Daniely Vaz da Silva2023-06-27T19:51:54Z2023-06-27T19:51:54Z2022-12-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/29565ark:/26339/001300000p9t9porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-06-27T19:51:54Zoai:repositorio.ufsm.br:1/29565Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2023-06-27T19:51:54Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil
Vis-NIR-SWIR spectroscopy combined with machine learning for copper and zinc prediction in vineyard soils in southern Brazil
title Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil
spellingShingle Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil
Sangoi, Daniely Vaz da Silva
Sensoriamento remoto hiperespectral
Metais pesados
Pré-processamento
Aprendizado de máquina
Modelo de predição global e regional
Hyperspectral remote sensing
Heavy metals
Pre-processing
Machine learning
Global and regional prediction model
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
title_short Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil
title_full Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil
title_fullStr Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil
title_full_unstemmed Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil
title_sort Espectroscopia Vis-NIR-SWIR combinada com machine learning para predição de cobre e zinco em solos de vinhedos no sul do Brasil
author Sangoi, Daniely Vaz da Silva
author_facet Sangoi, Daniely Vaz da Silva
author_role author
dc.contributor.none.fl_str_mv Dalmolin, Ricardo Simão Diniz
http://lattes.cnpq.br/3735884911693854
Bueno, Jean Michel Moura
Miguel, Pablo
Tiecher, Tales
Pedron, Fabrício de Araújo
Schenato, Ricardo Bergamo
dc.contributor.author.fl_str_mv Sangoi, Daniely Vaz da Silva
dc.subject.por.fl_str_mv Sensoriamento remoto hiperespectral
Metais pesados
Pré-processamento
Aprendizado de máquina
Modelo de predição global e regional
Hyperspectral remote sensing
Heavy metals
Pre-processing
Machine learning
Global and regional prediction model
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
topic Sensoriamento remoto hiperespectral
Metais pesados
Pré-processamento
Aprendizado de máquina
Modelo de predição global e regional
Hyperspectral remote sensing
Heavy metals
Pre-processing
Machine learning
Global and regional prediction model
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
description Careful and sustainable management of vineyard soils is fundamental to the success of vineyards. These areas have been faced with high levels of available copper (Cu) and zinc (Zn) in the soil, as a result of the frequent applications of fungicides based on these elements. This can result in high levels in the soil, resulting in toxicity to plants, also runoff and reach riverbeds, and even leach and reach groundwater. Soil collection and analysis are essential tools to determine the Cu and Zn content available in the soil. However, routine laboratory analyzes are characterized by the destruction of samples and generate chemical residues, which harm the environment if not disposed of correctly. Spectroscopy in the visible, near-infrared and shortwave electromagnetic spectrum (Vis-NIR-SWIR) combined with machine learning methods has shown great advantages and important potential as a technique for predicting soil clay and organic carbon contents. In the scientific and technical field, there is a demand for research related to Vis-NIR-SWIR spectroscopy studies related to other soil attributes, such as Cu and Zn. Therefore, this thesis explores the Vis-NIR-SWIR spectroscopy technique combined with machine learning methods to develop spectral prediction models for available Cu and Zn contents in vineyard soils. The literature shows that the predictive capacity of the models is associated with the characteristics of the soil spectral data and the machine learning method used in the predictive modeling. Therefore, it is fundamental to evaluate the characteristics of the spectral curves, pre-processing and machine learning method in data sets, composed of soils with variation in physical, chemical and mineralogical characteristics, as in the case of subtropical soils in the present study. There is also a need to test the effect of the strategy of stratifying general databases into regional sets on the calibration of prediction models. In STUDY 1, initially, 1482 soil samples were collected from different vineyards in three grape producing regions in the state of Rio Grande do Sul (RS), Brazil: Campos de Cima da Serra, Serra Gaúcha and Campanha Gaúcha. These regions have different levels of Cu and Zn in the soil. Samples were analyzed chemically by Mehlich-1 and spectrally by Vis-NIR-SWIR. The machine learning techniques used were Partial Least Square Regression (PLSR), Cubist (CUB), Support Vector Machine (SVM) and Random Forest (RF). The results identified relevant information in the spectral signatures, which were used to spectrally analyze the available Cu and Zn contents in the soil. It was possible to perform the predictions of these elements due to the inferences with spectrally active soil properties. The highest accuracies were obtained by combining RF with pre-processed spectra using the Savitzky-Golay first derivative technique. As for STUDY 2, the total database (n=1482) was separated into regional subsets based on specific characteristics of the regions where the soil samples were collected. The spectral models were calibrated and after external validation was carried out. With this strategy, it was possible to indirectly estimate the available Cu and Zn contents, with greater accuracy of predictions being observed for models calibrated with regional subsets.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-30
2023-06-27T19:51:54Z
2023-06-27T19:51:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/29565
dc.identifier.dark.fl_str_mv ark:/26339/001300000p9t9
url http://repositorio.ufsm.br/handle/1/29565
identifier_str_mv ark:/26339/001300000p9t9
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Ciência do Solo
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Ciência do Solo
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153428230307840