Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Ferraz, Rafael Camargo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/001300000h010
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/3610
Resumo: The reference evapotranspiration (ETo) is a component of great importance in several areas, as well as studies in agricultural and water resources management. Several methods of determination are studied, the Penman-Monteith widely used as standard. The main disadvantage of this method is the fact that the meteorological data required are usually not easily available, or have a high cost for determination. The insertion of artificial neural networks (ANN) in these studies provides satisfactory results with fewer input variables. This paper's main objective is to develop a web and mobile tool for determining ETo models using artificial neural networks for the State of Rio Grande do Sul The data used for modeling were collected from the stations of the National Meteorological Institute between 2008 and 2012. It was adopted as the standard ETo values estimated by the Penman-Mointeith and then compared with those obtained with the RNA's. The scheduling algorithm was defined as the best neural network architecture, considering the indide performance and error evaluation. Both applications were developed under Linux with free tools and SQLite database. It can be seen that the estimates made with the RNA's have better performance when compared with the known empirical methods, varying its index of determination (R²) between 0,856 and 1,0. Obtained outperform models with daily solar radiation as input. Two model was chosen to implement the system architecture, the first solar radiation with insertion of the second liquid architecture makes use of extraterrestrial radiation. This definition was chosen because of the lack or high cost for obtaining solar radiation data net. It was concluded that artificial neural networks are able to predict the quality of reference evapotranspiration for the State of Rio Grande do Sul enabling applications on web and mobile.
id UFSM_5cbc4bcf28b5a32cc2b3888e02b42ab5
oai_identifier_str oai:repositorio.ufsm.br:1/3610
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiaisWeb and mobile system to estimate reference evapotranspiration using artificial neural networksNeuroEvapAndroidDispositivos móveisPenman-MointeithTecnologia da informaçãoNeuroEvapAndroidMobilePenman-MointeithInformation technologyCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAThe reference evapotranspiration (ETo) is a component of great importance in several areas, as well as studies in agricultural and water resources management. Several methods of determination are studied, the Penman-Monteith widely used as standard. The main disadvantage of this method is the fact that the meteorological data required are usually not easily available, or have a high cost for determination. The insertion of artificial neural networks (ANN) in these studies provides satisfactory results with fewer input variables. This paper's main objective is to develop a web and mobile tool for determining ETo models using artificial neural networks for the State of Rio Grande do Sul The data used for modeling were collected from the stations of the National Meteorological Institute between 2008 and 2012. It was adopted as the standard ETo values estimated by the Penman-Mointeith and then compared with those obtained with the RNA's. The scheduling algorithm was defined as the best neural network architecture, considering the indide performance and error evaluation. Both applications were developed under Linux with free tools and SQLite database. It can be seen that the estimates made with the RNA's have better performance when compared with the known empirical methods, varying its index of determination (R²) between 0,856 and 1,0. Obtained outperform models with daily solar radiation as input. Two model was chosen to implement the system architecture, the first solar radiation with insertion of the second liquid architecture makes use of extraterrestrial radiation. This definition was chosen because of the lack or high cost for obtaining solar radiation data net. It was concluded that artificial neural networks are able to predict the quality of reference evapotranspiration for the State of Rio Grande do Sul enabling applications on web and mobile.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorA evapotranspiração de referência (ETo) é um componente de grande importância em diversas áreas, assim como nos estudos agrícolas e na gestão dos recursos hídricos. Vários métodos de determinação são estudados, sendo o modelo de Penman-Monteith utilizado amplamente como padrão. A principal desvantagem deste método é o fato de que os dados meteorológicos necessários normalmente não estão facilmente disponibilizados, ou possuem um custo elevado para determinação. A inserção das redes neurais artificiais (RNA) nestes estudos possibilita obter resultados satisfatórios com número menor de variáveis de entradas. O presente trabalho tem por objetivo principal, desenvolver uma ferramenta web e mobile para a determinação da ETo utilizando modelos de redes neurais artificiais para o Estado do Rio Grande do Sul. Os dados utilizados para modelagem foram coletados junto as estações do Instituto Nacional de Meteorologia entre 2008 e 2012. Adotou-se como padrão os valores de ETo estimados pelo método de Penman-Mointeith e posteriormente comparado com os obtidos com as RNA s. O algoritmo de programação foi definido a partir da melhor arquitetura de rede neural, considerando o índide de desempenho e avaliação do erro. Ambas as aplicações foram desenvolvidas em ambiente Linux, com ferramentas livres e banco de dados SQLite. Pode-se perceber que as estimativas realizadas com as RNA's apresentam melhor desempenho quando comparado com os métodos empíricos conhecidos, variando seu índice de determinação (R²) entre 0,856 e 1,0. Obteve-se desempenho superior nos modelos com radiação solar diária como variável de entrada. Foi escolhido dois modelos de arquitetura para implementar no sistema, sendo o primeiro com inserção de radiação solar líquida e a segunda arquitetura utiliza-se de radiação solar extraterreste. Essa definição foi escolhida devido a carência ou custo alto para obtenção dos dados de radiação solar líquida. Concluiu-se que as redes neurais artificias são capazes de predizer com qualidade os valores de evapotranspiração de referencia para o Estado do Rio Grande do Sul possibilitando aplicações em sistemas web e mobile.Universidade Federal de Santa MariaBREngenharia AgrícolaUFSMPrograma de Pós-Graduação em Engenharia AgrícolaRobaina, Adroaldo Diashttp://lattes.cnpq.br/8629241691140049Zamberlan, João Fernandohttp://lattes.cnpq.br/1383156245860606Weber, Liane de Souzahttp://lattes.cnpq.br/2891799660226360Schons, Ricardo Luishttp://lattes.cnpq.br/9875030355020810Gomes, Ana Carla dos Santoshttp://lattes.cnpq.br/6321874855275614Ferraz, Rafael Camargo2014-06-132014-06-132013-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfFERRAZ, Rafael Camargo. Web and mobile system to estimate reference evapotranspiration using artificial neural networks. 2013. 119 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Santa Maria, Santa Maria, 2013.http://repositorio.ufsm.br/handle/1/3610ark:/26339/001300000h010porinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-05-25T12:28:15Zoai:repositorio.ufsm.br:1/3610Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2023-05-25T12:28:15Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais
Web and mobile system to estimate reference evapotranspiration using artificial neural networks
title Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais
spellingShingle Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais
Ferraz, Rafael Camargo
NeuroEvap
Android
Dispositivos móveis
Penman-Mointeith
Tecnologia da informação
NeuroEvap
Android
Mobile
Penman-Mointeith
Information technology
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais
title_full Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais
title_fullStr Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais
title_full_unstemmed Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais
title_sort Sistema web e mobile para estimativa de evapotranspiração de referência utilizando redes neurais artificiais
author Ferraz, Rafael Camargo
author_facet Ferraz, Rafael Camargo
author_role author
dc.contributor.none.fl_str_mv Robaina, Adroaldo Dias
http://lattes.cnpq.br/8629241691140049
Zamberlan, João Fernando
http://lattes.cnpq.br/1383156245860606
Weber, Liane de Souza
http://lattes.cnpq.br/2891799660226360
Schons, Ricardo Luis
http://lattes.cnpq.br/9875030355020810
Gomes, Ana Carla dos Santos
http://lattes.cnpq.br/6321874855275614
dc.contributor.author.fl_str_mv Ferraz, Rafael Camargo
dc.subject.por.fl_str_mv NeuroEvap
Android
Dispositivos móveis
Penman-Mointeith
Tecnologia da informação
NeuroEvap
Android
Mobile
Penman-Mointeith
Information technology
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
topic NeuroEvap
Android
Dispositivos móveis
Penman-Mointeith
Tecnologia da informação
NeuroEvap
Android
Mobile
Penman-Mointeith
Information technology
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description The reference evapotranspiration (ETo) is a component of great importance in several areas, as well as studies in agricultural and water resources management. Several methods of determination are studied, the Penman-Monteith widely used as standard. The main disadvantage of this method is the fact that the meteorological data required are usually not easily available, or have a high cost for determination. The insertion of artificial neural networks (ANN) in these studies provides satisfactory results with fewer input variables. This paper's main objective is to develop a web and mobile tool for determining ETo models using artificial neural networks for the State of Rio Grande do Sul The data used for modeling were collected from the stations of the National Meteorological Institute between 2008 and 2012. It was adopted as the standard ETo values estimated by the Penman-Mointeith and then compared with those obtained with the RNA's. The scheduling algorithm was defined as the best neural network architecture, considering the indide performance and error evaluation. Both applications were developed under Linux with free tools and SQLite database. It can be seen that the estimates made with the RNA's have better performance when compared with the known empirical methods, varying its index of determination (R²) between 0,856 and 1,0. Obtained outperform models with daily solar radiation as input. Two model was chosen to implement the system architecture, the first solar radiation with insertion of the second liquid architecture makes use of extraterrestrial radiation. This definition was chosen because of the lack or high cost for obtaining solar radiation data net. It was concluded that artificial neural networks are able to predict the quality of reference evapotranspiration for the State of Rio Grande do Sul enabling applications on web and mobile.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-19
2014-06-13
2014-06-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERRAZ, Rafael Camargo. Web and mobile system to estimate reference evapotranspiration using artificial neural networks. 2013. 119 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Santa Maria, Santa Maria, 2013.
http://repositorio.ufsm.br/handle/1/3610
dc.identifier.dark.fl_str_mv ark:/26339/001300000h010
identifier_str_mv FERRAZ, Rafael Camargo. Web and mobile system to estimate reference evapotranspiration using artificial neural networks. 2013. 119 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Santa Maria, Santa Maria, 2013.
ark:/26339/001300000h010
url http://repositorio.ufsm.br/handle/1/3610
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153400645419008