Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/26339/001300001b3z8 |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Santa Maria
Brasil Meteorologia UFSM Programa de Pós-Graduação em Meteorologia Centro de Ciências Naturais e Exatas |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufsm.br/handle/1/33314 |
Resumo: | Recent reports from the Intergovernmental Panel on Climate Change (IPCC) indicate that current greenhouse gas concentrations in the atmosphere have reached their highest levels in the past 800,000 years, intensifying global warming and causing an increase in extreme weather events. The economic sectors that contribute significantly to the increase in greenhouse gases, particularly carbon dioxide (CO2), are agriculture and livestock. These sectors are strongly present in states such as Rio Grande do Sul (RS), mainly due to local climatic and geographical conditions. The southern half of the state, belonging to the Pampa biome, characterized by lowlying vegetation, has been used for livestock for centuries, but is under strong pressure to convert to agriculture, which has already been consolidated in the northern half of the state since 1950. Understanding CO2 exchanges in native Pampa grasslands becomes essential to support public policies for mitigation and maintenance of the natural ecosystem. In this study, the net exchange of CO2 (NEE) between native grassland and the atmosphere was measured using eddy covariance towers, using the turbulent vortex covariance (EC) technique. The NEE obtained was partitioned into the gross primary production (GPP) and ecosystem respiration (RECO) components. The three components were used to obtain regional models of fluxes between the surface and the atmosphere. The data were obtained from three eddy covariance towers on different grazing managements in native Pampa field: one in the center of RS (SMA, in Santa Maria) and two in the south of RS (ACR and ACD, both in Aceguá - ACE). The results of this work are presented in the form of two articles. In the first, we estimated GPP using the MOD17 algorithm for the SMA and ACE sites, exploring the different parameterizations of the tabulated parameters for terrestrial biomes, BPLUT, (savanna and grasses) and input meteorological data (reanalysis and measured surface data). The results showed that the model underestimates measured GPP. The simulation with calibration of the maximum light use efficiency parameter (Ԑmax) seasonally obtained the best results, with a significant decrease in underestimations. In the second article, we present a unified methodology to estimate NEE, GPP and RECO through the use of machine learning (Random Forest - RF), in conjunction with satellite data. The results showed that, even with few years of data for RF model training, it was possible to estimate NEE, GPP and RECO with good accuracy (R 2 > 0.59, R 2 > 0.74 and R 2 > 0.65, respectively) and with underestimation less than 16% for all sites and all components, except NEE in ACR, probably due to the cattle management being more intense than the others. This methodology presented lower GPP underestimation than that estimated by the MOD17 model, and improvements can be made, including a variable that represents cattle management. In this way, the methodology using RF can become an important tool for assessing CO2 exchanges and for feasibility studies of carbon credit projects due to its predictive potential and easy acquisition of the variables needed in the modeling. |
| id |
UFSM_6e31a9d02c3dc97915073943df0fb4b4 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufsm.br:1/33314 |
| network_acronym_str |
UFSM |
| network_name_str |
Manancial - Repositório Digital da UFSM |
| repository_id_str |
|
| spelling |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forestModeling CO2 fluxes in grazing systems system of the Pampa biome with remote sensing data and random forestFluxo de CO2GPPRECOMOD17Machine learningEddy covarianceCO2 fluxCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIARecent reports from the Intergovernmental Panel on Climate Change (IPCC) indicate that current greenhouse gas concentrations in the atmosphere have reached their highest levels in the past 800,000 years, intensifying global warming and causing an increase in extreme weather events. The economic sectors that contribute significantly to the increase in greenhouse gases, particularly carbon dioxide (CO2), are agriculture and livestock. These sectors are strongly present in states such as Rio Grande do Sul (RS), mainly due to local climatic and geographical conditions. The southern half of the state, belonging to the Pampa biome, characterized by lowlying vegetation, has been used for livestock for centuries, but is under strong pressure to convert to agriculture, which has already been consolidated in the northern half of the state since 1950. Understanding CO2 exchanges in native Pampa grasslands becomes essential to support public policies for mitigation and maintenance of the natural ecosystem. In this study, the net exchange of CO2 (NEE) between native grassland and the atmosphere was measured using eddy covariance towers, using the turbulent vortex covariance (EC) technique. The NEE obtained was partitioned into the gross primary production (GPP) and ecosystem respiration (RECO) components. The three components were used to obtain regional models of fluxes between the surface and the atmosphere. The data were obtained from three eddy covariance towers on different grazing managements in native Pampa field: one in the center of RS (SMA, in Santa Maria) and two in the south of RS (ACR and ACD, both in Aceguá - ACE). The results of this work are presented in the form of two articles. In the first, we estimated GPP using the MOD17 algorithm for the SMA and ACE sites, exploring the different parameterizations of the tabulated parameters for terrestrial biomes, BPLUT, (savanna and grasses) and input meteorological data (reanalysis and measured surface data). The results showed that the model underestimates measured GPP. The simulation with calibration of the maximum light use efficiency parameter (Ԑmax) seasonally obtained the best results, with a significant decrease in underestimations. In the second article, we present a unified methodology to estimate NEE, GPP and RECO through the use of machine learning (Random Forest - RF), in conjunction with satellite data. The results showed that, even with few years of data for RF model training, it was possible to estimate NEE, GPP and RECO with good accuracy (R 2 > 0.59, R 2 > 0.74 and R 2 > 0.65, respectively) and with underestimation less than 16% for all sites and all components, except NEE in ACR, probably due to the cattle management being more intense than the others. This methodology presented lower GPP underestimation than that estimated by the MOD17 model, and improvements can be made, including a variable that represents cattle management. In this way, the methodology using RF can become an important tool for assessing CO2 exchanges and for feasibility studies of carbon credit projects due to its predictive potential and easy acquisition of the variables needed in the modeling.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESRelatórios recentes do Painel Intergovernamental sobre Mudanças Climáticas (IPCC) indicam que as concentrações atuais de gases do efeito estufa na atmosfera atingiram os níveis mais elevados dos últimos 800 mil anos, intensificando o aquecimento global e provocando aumento dos eventos meteorológicos extremos. Os setores da economia que contribuem significativamente para o aumento dos gases de efeito estufa, principalmente o dióxido de carbono (CO2), são a agricultura e a pecuária. Esses setores são fortemente presentes em estados como o Rio Grande do Sul (RS), principalmente devido às condições climáticas e geográficas locais. A metade sul do estado, pertencente ao bioma Pampa, caracterizada por vegetação rasteira, é utilizada para a pecuária a séculos, mas está sofrendo forte pressão de conversão para agricultura, já consolidada na metade norte do estado desde 1950. Conhecer as trocas de CO2 nas pastagens nativas do Pampa se torna fundamental para subsidiar políticas públicas de mitigação e manutenção do ecossistema natural. Neste trabalho, a troca líquida de CO2 (NEE, do inglês net exchange ecossystem) entre a pastagem nativa e a atmosfera foi medida por meio de torres de fluxo, utilizando a técnica da Covariância dos Vórtices Turbulentos (EC). O NEE obtido foi particionado nas componentes produção primária bruta (GPP) e respiração do ecossistema (RECO). As três componentes foram utilizadas para obtenção de modelos regionais dos fluxos entre a superfície e a atmosfera. Os dados foram obtidos a partir de três torres de fluxo sobre diferentes manejos pastoris em campo nativo do bioma Pampa: um no centro do RS (SMA, em Santa Maria) e dois no sul do RS (ACR e ACD, ambos em Aceguá - ACE). Os resultados deste trabalho são apresentados na forma de dois artigos. No primeiro, estimamos GPP usando o algoritmo MOD17 para os sítios SMA e ACE, explorando as diferentes parametrizações dos parâmetros tabelados para os biomas terrestres, BPLUT, (savana e gramíneas) e dados meteorológicos de entrada (reanálise e dados medidos em superfície). Os resultados mostraram que o modelo subestima GPP medido. A simulação com calibração do parâmetro de uso eficiente da luz máximo (Ԑmax) de forma sazonal obteve os melhores resultados, com diminuição significativa das subestimativas. No segundo artigo, apresentamos uma metodologia unificada para estimar NEE, GPP e RECO através do uso de machine learnig (Random Forest – RF), em conjunto com dados de satélite. Os resultados mostraram que, mesmo com poucos anos de dados para o treinamento do modelo RF foi possível estimar NEE, GPP e RECO com boa acurácia (R 2 > 0,59, R 2 > 0,74 e R 2 > 0,65, respectivamente) e com subestimativa menor que 16% para todos os sítios e todas as componentes, exceto NEE em ACR, provavelmente devido ao manejo do gado ser mais intenso em relação aos demais. Esta metodologia apresentou menor subestimativa de GPP que o estimado pelo modelo MOD17, sendo que melhorias podem ser realizadas, incluindo uma variável que represente o manejo do gado. Dessa forma, a metodologia utilizando RF pode se tornar uma importante ferramenta para avaliação das trocas de CO2 e para estudos de viabilidade de projetos de crédito de carbono pelo seu potencial preditivo e fácil obtenção das variáveis necessárias na modelagem.Universidade Federal de Santa MariaBrasilMeteorologiaUFSMPrograma de Pós-Graduação em MeteorologiaCentro de Ciências Naturais e ExatasRoberti, Débora Reginahttp://lattes.cnpq.br/6952076109453197Ruhoff, AndersonFarias, Jorge Antonio deKuplich, Tatiana MoraSouza, Vanessa de ArrudaBremm, Tiago2024-11-04T12:48:26Z2024-11-04T12:48:26Z2023-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/33314ark:/26339/001300001b3z8porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-11-04T12:48:26Zoai:repositorio.ufsm.br:1/33314Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2024-11-04T12:48:26Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
| dc.title.none.fl_str_mv |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest Modeling CO2 fluxes in grazing systems system of the Pampa biome with remote sensing data and random forest |
| title |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest |
| spellingShingle |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest Bremm, Tiago Fluxo de CO2 GPP RECO MOD17 Machine learning Eddy covariance CO2 flux CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
| title_short |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest |
| title_full |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest |
| title_fullStr |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest |
| title_full_unstemmed |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest |
| title_sort |
Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest |
| author |
Bremm, Tiago |
| author_facet |
Bremm, Tiago |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Roberti, Débora Regina http://lattes.cnpq.br/6952076109453197 Ruhoff, Anderson Farias, Jorge Antonio de Kuplich, Tatiana Mora Souza, Vanessa de Arruda |
| dc.contributor.author.fl_str_mv |
Bremm, Tiago |
| dc.subject.por.fl_str_mv |
Fluxo de CO2 GPP RECO MOD17 Machine learning Eddy covariance CO2 flux CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
| topic |
Fluxo de CO2 GPP RECO MOD17 Machine learning Eddy covariance CO2 flux CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
| description |
Recent reports from the Intergovernmental Panel on Climate Change (IPCC) indicate that current greenhouse gas concentrations in the atmosphere have reached their highest levels in the past 800,000 years, intensifying global warming and causing an increase in extreme weather events. The economic sectors that contribute significantly to the increase in greenhouse gases, particularly carbon dioxide (CO2), are agriculture and livestock. These sectors are strongly present in states such as Rio Grande do Sul (RS), mainly due to local climatic and geographical conditions. The southern half of the state, belonging to the Pampa biome, characterized by lowlying vegetation, has been used for livestock for centuries, but is under strong pressure to convert to agriculture, which has already been consolidated in the northern half of the state since 1950. Understanding CO2 exchanges in native Pampa grasslands becomes essential to support public policies for mitigation and maintenance of the natural ecosystem. In this study, the net exchange of CO2 (NEE) between native grassland and the atmosphere was measured using eddy covariance towers, using the turbulent vortex covariance (EC) technique. The NEE obtained was partitioned into the gross primary production (GPP) and ecosystem respiration (RECO) components. The three components were used to obtain regional models of fluxes between the surface and the atmosphere. The data were obtained from three eddy covariance towers on different grazing managements in native Pampa field: one in the center of RS (SMA, in Santa Maria) and two in the south of RS (ACR and ACD, both in Aceguá - ACE). The results of this work are presented in the form of two articles. In the first, we estimated GPP using the MOD17 algorithm for the SMA and ACE sites, exploring the different parameterizations of the tabulated parameters for terrestrial biomes, BPLUT, (savanna and grasses) and input meteorological data (reanalysis and measured surface data). The results showed that the model underestimates measured GPP. The simulation with calibration of the maximum light use efficiency parameter (Ԑmax) seasonally obtained the best results, with a significant decrease in underestimations. In the second article, we present a unified methodology to estimate NEE, GPP and RECO through the use of machine learning (Random Forest - RF), in conjunction with satellite data. The results showed that, even with few years of data for RF model training, it was possible to estimate NEE, GPP and RECO with good accuracy (R 2 > 0.59, R 2 > 0.74 and R 2 > 0.65, respectively) and with underestimation less than 16% for all sites and all components, except NEE in ACR, probably due to the cattle management being more intense than the others. This methodology presented lower GPP underestimation than that estimated by the MOD17 model, and improvements can be made, including a variable that represents cattle management. In this way, the methodology using RF can become an important tool for assessing CO2 exchanges and for feasibility studies of carbon credit projects due to its predictive potential and easy acquisition of the variables needed in the modeling. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-08-30 2024-11-04T12:48:26Z 2024-11-04T12:48:26Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/33314 |
| dc.identifier.dark.fl_str_mv |
ark:/26339/001300001b3z8 |
| url |
http://repositorio.ufsm.br/handle/1/33314 |
| identifier_str_mv |
ark:/26339/001300001b3z8 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Meteorologia UFSM Programa de Pós-Graduação em Meteorologia Centro de Ciências Naturais e Exatas |
| publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Meteorologia UFSM Programa de Pós-Graduação em Meteorologia Centro de Ciências Naturais e Exatas |
| dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
| instname_str |
Universidade Federal de Santa Maria (UFSM) |
| instacron_str |
UFSM |
| institution |
UFSM |
| reponame_str |
Manancial - Repositório Digital da UFSM |
| collection |
Manancial - Repositório Digital da UFSM |
| repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
| repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br |
| _version_ |
1847153421210091520 |