Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Bremm, Tiago
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/001300001b3z8
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Meteorologia
UFSM
Programa de Pós-Graduação em Meteorologia
Centro de Ciências Naturais e Exatas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
GPP
Link de acesso: http://repositorio.ufsm.br/handle/1/33314
Resumo: Recent reports from the Intergovernmental Panel on Climate Change (IPCC) indicate that current greenhouse gas concentrations in the atmosphere have reached their highest levels in the past 800,000 years, intensifying global warming and causing an increase in extreme weather events. The economic sectors that contribute significantly to the increase in greenhouse gases, particularly carbon dioxide (CO2), are agriculture and livestock. These sectors are strongly present in states such as Rio Grande do Sul (RS), mainly due to local climatic and geographical conditions. The southern half of the state, belonging to the Pampa biome, characterized by lowlying vegetation, has been used for livestock for centuries, but is under strong pressure to convert to agriculture, which has already been consolidated in the northern half of the state since 1950. Understanding CO2 exchanges in native Pampa grasslands becomes essential to support public policies for mitigation and maintenance of the natural ecosystem. In this study, the net exchange of CO2 (NEE) between native grassland and the atmosphere was measured using eddy covariance towers, using the turbulent vortex covariance (EC) technique. The NEE obtained was partitioned into the gross primary production (GPP) and ecosystem respiration (RECO) components. The three components were used to obtain regional models of fluxes between the surface and the atmosphere. The data were obtained from three eddy covariance towers on different grazing managements in native Pampa field: one in the center of RS (SMA, in Santa Maria) and two in the south of RS (ACR and ACD, both in Aceguá - ACE). The results of this work are presented in the form of two articles. In the first, we estimated GPP using the MOD17 algorithm for the SMA and ACE sites, exploring the different parameterizations of the tabulated parameters for terrestrial biomes, BPLUT, (savanna and grasses) and input meteorological data (reanalysis and measured surface data). The results showed that the model underestimates measured GPP. The simulation with calibration of the maximum light use efficiency parameter (Ԑmax) seasonally obtained the best results, with a significant decrease in underestimations. In the second article, we present a unified methodology to estimate NEE, GPP and RECO through the use of machine learning (Random Forest - RF), in conjunction with satellite data. The results showed that, even with few years of data for RF model training, it was possible to estimate NEE, GPP and RECO with good accuracy (R 2 > 0.59, R 2 > 0.74 and R 2 > 0.65, respectively) and with underestimation less than 16% for all sites and all components, except NEE in ACR, probably due to the cattle management being more intense than the others. This methodology presented lower GPP underestimation than that estimated by the MOD17 model, and improvements can be made, including a variable that represents cattle management. In this way, the methodology using RF can become an important tool for assessing CO2 exchanges and for feasibility studies of carbon credit projects due to its predictive potential and easy acquisition of the variables needed in the modeling.
id UFSM_6e31a9d02c3dc97915073943df0fb4b4
oai_identifier_str oai:repositorio.ufsm.br:1/33314
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forestModeling CO2 fluxes in grazing systems system of the Pampa biome with remote sensing data and random forestFluxo de CO2GPPRECOMOD17Machine learningEddy covarianceCO2 fluxCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIARecent reports from the Intergovernmental Panel on Climate Change (IPCC) indicate that current greenhouse gas concentrations in the atmosphere have reached their highest levels in the past 800,000 years, intensifying global warming and causing an increase in extreme weather events. The economic sectors that contribute significantly to the increase in greenhouse gases, particularly carbon dioxide (CO2), are agriculture and livestock. These sectors are strongly present in states such as Rio Grande do Sul (RS), mainly due to local climatic and geographical conditions. The southern half of the state, belonging to the Pampa biome, characterized by lowlying vegetation, has been used for livestock for centuries, but is under strong pressure to convert to agriculture, which has already been consolidated in the northern half of the state since 1950. Understanding CO2 exchanges in native Pampa grasslands becomes essential to support public policies for mitigation and maintenance of the natural ecosystem. In this study, the net exchange of CO2 (NEE) between native grassland and the atmosphere was measured using eddy covariance towers, using the turbulent vortex covariance (EC) technique. The NEE obtained was partitioned into the gross primary production (GPP) and ecosystem respiration (RECO) components. The three components were used to obtain regional models of fluxes between the surface and the atmosphere. The data were obtained from three eddy covariance towers on different grazing managements in native Pampa field: one in the center of RS (SMA, in Santa Maria) and two in the south of RS (ACR and ACD, both in Aceguá - ACE). The results of this work are presented in the form of two articles. In the first, we estimated GPP using the MOD17 algorithm for the SMA and ACE sites, exploring the different parameterizations of the tabulated parameters for terrestrial biomes, BPLUT, (savanna and grasses) and input meteorological data (reanalysis and measured surface data). The results showed that the model underestimates measured GPP. The simulation with calibration of the maximum light use efficiency parameter (Ԑmax) seasonally obtained the best results, with a significant decrease in underestimations. In the second article, we present a unified methodology to estimate NEE, GPP and RECO through the use of machine learning (Random Forest - RF), in conjunction with satellite data. The results showed that, even with few years of data for RF model training, it was possible to estimate NEE, GPP and RECO with good accuracy (R 2 > 0.59, R 2 > 0.74 and R 2 > 0.65, respectively) and with underestimation less than 16% for all sites and all components, except NEE in ACR, probably due to the cattle management being more intense than the others. This methodology presented lower GPP underestimation than that estimated by the MOD17 model, and improvements can be made, including a variable that represents cattle management. In this way, the methodology using RF can become an important tool for assessing CO2 exchanges and for feasibility studies of carbon credit projects due to its predictive potential and easy acquisition of the variables needed in the modeling.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESRelatórios recentes do Painel Intergovernamental sobre Mudanças Climáticas (IPCC) indicam que as concentrações atuais de gases do efeito estufa na atmosfera atingiram os níveis mais elevados dos últimos 800 mil anos, intensificando o aquecimento global e provocando aumento dos eventos meteorológicos extremos. Os setores da economia que contribuem significativamente para o aumento dos gases de efeito estufa, principalmente o dióxido de carbono (CO2), são a agricultura e a pecuária. Esses setores são fortemente presentes em estados como o Rio Grande do Sul (RS), principalmente devido às condições climáticas e geográficas locais. A metade sul do estado, pertencente ao bioma Pampa, caracterizada por vegetação rasteira, é utilizada para a pecuária a séculos, mas está sofrendo forte pressão de conversão para agricultura, já consolidada na metade norte do estado desde 1950. Conhecer as trocas de CO2 nas pastagens nativas do Pampa se torna fundamental para subsidiar políticas públicas de mitigação e manutenção do ecossistema natural. Neste trabalho, a troca líquida de CO2 (NEE, do inglês net exchange ecossystem) entre a pastagem nativa e a atmosfera foi medida por meio de torres de fluxo, utilizando a técnica da Covariância dos Vórtices Turbulentos (EC). O NEE obtido foi particionado nas componentes produção primária bruta (GPP) e respiração do ecossistema (RECO). As três componentes foram utilizadas para obtenção de modelos regionais dos fluxos entre a superfície e a atmosfera. Os dados foram obtidos a partir de três torres de fluxo sobre diferentes manejos pastoris em campo nativo do bioma Pampa: um no centro do RS (SMA, em Santa Maria) e dois no sul do RS (ACR e ACD, ambos em Aceguá - ACE). Os resultados deste trabalho são apresentados na forma de dois artigos. No primeiro, estimamos GPP usando o algoritmo MOD17 para os sítios SMA e ACE, explorando as diferentes parametrizações dos parâmetros tabelados para os biomas terrestres, BPLUT, (savana e gramíneas) e dados meteorológicos de entrada (reanálise e dados medidos em superfície). Os resultados mostraram que o modelo subestima GPP medido. A simulação com calibração do parâmetro de uso eficiente da luz máximo (Ԑmax) de forma sazonal obteve os melhores resultados, com diminuição significativa das subestimativas. No segundo artigo, apresentamos uma metodologia unificada para estimar NEE, GPP e RECO através do uso de machine learnig (Random Forest – RF), em conjunto com dados de satélite. Os resultados mostraram que, mesmo com poucos anos de dados para o treinamento do modelo RF foi possível estimar NEE, GPP e RECO com boa acurácia (R 2 > 0,59, R 2 > 0,74 e R 2 > 0,65, respectivamente) e com subestimativa menor que 16% para todos os sítios e todas as componentes, exceto NEE em ACR, provavelmente devido ao manejo do gado ser mais intenso em relação aos demais. Esta metodologia apresentou menor subestimativa de GPP que o estimado pelo modelo MOD17, sendo que melhorias podem ser realizadas, incluindo uma variável que represente o manejo do gado. Dessa forma, a metodologia utilizando RF pode se tornar uma importante ferramenta para avaliação das trocas de CO2 e para estudos de viabilidade de projetos de crédito de carbono pelo seu potencial preditivo e fácil obtenção das variáveis necessárias na modelagem.Universidade Federal de Santa MariaBrasilMeteorologiaUFSMPrograma de Pós-Graduação em MeteorologiaCentro de Ciências Naturais e ExatasRoberti, Débora Reginahttp://lattes.cnpq.br/6952076109453197Ruhoff, AndersonFarias, Jorge Antonio deKuplich, Tatiana MoraSouza, Vanessa de ArrudaBremm, Tiago2024-11-04T12:48:26Z2024-11-04T12:48:26Z2023-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/33314ark:/26339/001300001b3z8porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-11-04T12:48:26Zoai:repositorio.ufsm.br:1/33314Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2024-11-04T12:48:26Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
Modeling CO2 fluxes in grazing systems system of the Pampa biome with remote sensing data and random forest
title Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
spellingShingle Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
Bremm, Tiago
Fluxo de CO2
GPP
RECO
MOD17
Machine learning
Eddy covariance
CO2 flux
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA
title_short Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
title_full Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
title_fullStr Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
title_full_unstemmed Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
title_sort Modelagem de fluxos de CO2 em sistemas pastoris do bioma Pampa com dados de sensoriamento remoto e random forest
author Bremm, Tiago
author_facet Bremm, Tiago
author_role author
dc.contributor.none.fl_str_mv Roberti, Débora Regina
http://lattes.cnpq.br/6952076109453197
Ruhoff, Anderson
Farias, Jorge Antonio de
Kuplich, Tatiana Mora
Souza, Vanessa de Arruda
dc.contributor.author.fl_str_mv Bremm, Tiago
dc.subject.por.fl_str_mv Fluxo de CO2
GPP
RECO
MOD17
Machine learning
Eddy covariance
CO2 flux
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA
topic Fluxo de CO2
GPP
RECO
MOD17
Machine learning
Eddy covariance
CO2 flux
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA
description Recent reports from the Intergovernmental Panel on Climate Change (IPCC) indicate that current greenhouse gas concentrations in the atmosphere have reached their highest levels in the past 800,000 years, intensifying global warming and causing an increase in extreme weather events. The economic sectors that contribute significantly to the increase in greenhouse gases, particularly carbon dioxide (CO2), are agriculture and livestock. These sectors are strongly present in states such as Rio Grande do Sul (RS), mainly due to local climatic and geographical conditions. The southern half of the state, belonging to the Pampa biome, characterized by lowlying vegetation, has been used for livestock for centuries, but is under strong pressure to convert to agriculture, which has already been consolidated in the northern half of the state since 1950. Understanding CO2 exchanges in native Pampa grasslands becomes essential to support public policies for mitigation and maintenance of the natural ecosystem. In this study, the net exchange of CO2 (NEE) between native grassland and the atmosphere was measured using eddy covariance towers, using the turbulent vortex covariance (EC) technique. The NEE obtained was partitioned into the gross primary production (GPP) and ecosystem respiration (RECO) components. The three components were used to obtain regional models of fluxes between the surface and the atmosphere. The data were obtained from three eddy covariance towers on different grazing managements in native Pampa field: one in the center of RS (SMA, in Santa Maria) and two in the south of RS (ACR and ACD, both in Aceguá - ACE). The results of this work are presented in the form of two articles. In the first, we estimated GPP using the MOD17 algorithm for the SMA and ACE sites, exploring the different parameterizations of the tabulated parameters for terrestrial biomes, BPLUT, (savanna and grasses) and input meteorological data (reanalysis and measured surface data). The results showed that the model underestimates measured GPP. The simulation with calibration of the maximum light use efficiency parameter (Ԑmax) seasonally obtained the best results, with a significant decrease in underestimations. In the second article, we present a unified methodology to estimate NEE, GPP and RECO through the use of machine learning (Random Forest - RF), in conjunction with satellite data. The results showed that, even with few years of data for RF model training, it was possible to estimate NEE, GPP and RECO with good accuracy (R 2 > 0.59, R 2 > 0.74 and R 2 > 0.65, respectively) and with underestimation less than 16% for all sites and all components, except NEE in ACR, probably due to the cattle management being more intense than the others. This methodology presented lower GPP underestimation than that estimated by the MOD17 model, and improvements can be made, including a variable that represents cattle management. In this way, the methodology using RF can become an important tool for assessing CO2 exchanges and for feasibility studies of carbon credit projects due to its predictive potential and easy acquisition of the variables needed in the modeling.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-30
2024-11-04T12:48:26Z
2024-11-04T12:48:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/33314
dc.identifier.dark.fl_str_mv ark:/26339/001300001b3z8
url http://repositorio.ufsm.br/handle/1/33314
identifier_str_mv ark:/26339/001300001b3z8
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Meteorologia
UFSM
Programa de Pós-Graduação em Meteorologia
Centro de Ciências Naturais e Exatas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Meteorologia
UFSM
Programa de Pós-Graduação em Meteorologia
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153421210091520