Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Lima, Roney Eloy
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/00130000138q0
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/31991
Resumo: The quantitative and qualitative losses of post-harvest grains bring an imbalance in the grain production sector. To reduce losses, it is essential that the grain mass goes through cleaning and drying processes, to be stored with low levels of water and impurities. The heterogeneity of the batches of grains harvested at the beginning and end of the harvest can also alter the capacity and uniformity of the processes. Thus, the general objective of the study was to evaluate different technologies and management in the post-harvest of soybeans, based on the harvesting of grains with higher water contents, associated with drying and storage conditions and technologies and the effects on physical and physical chemistry of grains. Specifically, the objective was: 1) to evaluate different drying and storage technologies on quality losses in soybeans; 2) evaluate the effects of storage and storage operations on the quality of processed soybeans; 3) verify the use of mathematical models and multivariate analyzes to evaluate the relationship between the anticipation of the soybean harvest and the drying and storage conditions and the influences on the physical-chemical quality of the grains; 4) analyze the prediction of the quality of soybeans in different drying and storage technologies, on a real scale, using Machine Learning models. Among the results obtained, it was observed that: 1) the management of the grain mass in drying silos and continuous dryers reduced losses and guaranteed better grain quality; 2) grain quality losses due to drying management ranged from 0.23 to 3.26% in crude protein and from 0.15 to 3.05% in crude oil yield. Managing drying with a continuous dryer + silo-dryer-CDSD2, continuous dryer + silo-aerator-CDAS3 is an alternative for reducing losses and conserving grain quality, improving yield in relation to the protein and crude oil contents extracted in up to 95%; 3) early harvesting with water content above 23% and the adoption of drying systems with an air temperature of 80 °C in environments with temperatures below 23 °C preserved the physical-chemical quality of the grains; 4) the grains subjected to drying and storage in drying silos maintained the better quality at the end of the process. Although there were differences related to drying and storage technology in relation to changes in grain quality, it was noted that the Artificial Neural Networks model demonstrated superior performance in predicting grain quality. The Artificial Neural Networks model was unanimous in all processes and technologies evaluated. Therefore, it is recommended to carry out post-harvest drying of soybeans and subsequent storage of grains in drying silos, monitoring environmental and intergranular variables. It is recommended that this approach be associated with the use of Artificial Neural Network models to predict losses with greater efficiency in the drying and storage stages.
id UFSM_86206532ed6476dbdcf31d97c4f716b7
oai_identifier_str oai:repositorio.ufsm.br:1/31991
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e prediçãoDrying and storage of soybeans: effects on physical and physical-chemical quality, modeling and predictionMonitoramento e qualidade de grãos de sojaPré-processamento e armazenamento de sojaProcessamento industrial da sojaTecnologia pós-colheitaMonitoring and quality of soybeansPre-processing and storage of soybeansIndustrial soybean processingPost-harvest technologyCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAThe quantitative and qualitative losses of post-harvest grains bring an imbalance in the grain production sector. To reduce losses, it is essential that the grain mass goes through cleaning and drying processes, to be stored with low levels of water and impurities. The heterogeneity of the batches of grains harvested at the beginning and end of the harvest can also alter the capacity and uniformity of the processes. Thus, the general objective of the study was to evaluate different technologies and management in the post-harvest of soybeans, based on the harvesting of grains with higher water contents, associated with drying and storage conditions and technologies and the effects on physical and physical chemistry of grains. Specifically, the objective was: 1) to evaluate different drying and storage technologies on quality losses in soybeans; 2) evaluate the effects of storage and storage operations on the quality of processed soybeans; 3) verify the use of mathematical models and multivariate analyzes to evaluate the relationship between the anticipation of the soybean harvest and the drying and storage conditions and the influences on the physical-chemical quality of the grains; 4) analyze the prediction of the quality of soybeans in different drying and storage technologies, on a real scale, using Machine Learning models. Among the results obtained, it was observed that: 1) the management of the grain mass in drying silos and continuous dryers reduced losses and guaranteed better grain quality; 2) grain quality losses due to drying management ranged from 0.23 to 3.26% in crude protein and from 0.15 to 3.05% in crude oil yield. Managing drying with a continuous dryer + silo-dryer-CDSD2, continuous dryer + silo-aerator-CDAS3 is an alternative for reducing losses and conserving grain quality, improving yield in relation to the protein and crude oil contents extracted in up to 95%; 3) early harvesting with water content above 23% and the adoption of drying systems with an air temperature of 80 °C in environments with temperatures below 23 °C preserved the physical-chemical quality of the grains; 4) the grains subjected to drying and storage in drying silos maintained the better quality at the end of the process. Although there were differences related to drying and storage technology in relation to changes in grain quality, it was noted that the Artificial Neural Networks model demonstrated superior performance in predicting grain quality. The Artificial Neural Networks model was unanimous in all processes and technologies evaluated. Therefore, it is recommended to carry out post-harvest drying of soybeans and subsequent storage of grains in drying silos, monitoring environmental and intergranular variables. It is recommended that this approach be associated with the use of Artificial Neural Network models to predict losses with greater efficiency in the drying and storage stages.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESAs perdas quanti-qualitativas de grãos na pós-colheita trazem um desequilíbrio no setor produtivo de grãos. Para reduzir as perdas é fundamental que a massa de grãos passe por processos de limpeza e secagem, para ser armazenada com baixos teores de água e impurezas. A heterogeneidade dos lotes de grãos colhidos no início e no fim da colheita também pode alterar a capacidade e a uniformidade dos processos. Assim, o objetivo geral do estudo foi avaliar diferentes tecnologias e manejos na pós-colheita da soja, a partir da colheita dos grãos com teores de água mais elevados, associados às condições e tecnologias de secagem e armazenamento e aos efeitos sobre a qualidade física e físico-química dos grãos. Especificamente objetivou-se: 1) avaliar diferentes tecnologias de secagem e armazenamento sobre as perdas de qualidade na soja; 2) avaliar os efeitos das operações de armazenamento e armazenamento na qualidade da soja processada; 3) verificar a utilização de modelos matemáticos e análises multivariadas para avaliar a relação da antecipação da colheita da soja com as condições de secagem e armazenamento e às influências sobre a qualidade físicoquímica dos grãos; 4) analisar a predição da qualidade dos grãos de soja nas diferentes tecnologias de secagem e armazenamento, em escala real, usando modelos de Aprendizado de Máquina. Entre os resultados obtidos, observou-se que: 1) o manejo da massa de grãos em silos-secadores e secadores contínuos reduziram as perdas e garantiram uma melhor qualidade dos grãos; 2) as perdas de qualidade dos grãos em função do manejo da secagem variaram de 0,23 a 3,26% em proteína bruta e de 0,15 a 3,05% no rendimento de óleo bruto. O gerenciando da secagem com secador contínuo + silo-secador-CDSD2, secador contínuo + silo-aerador-CDAS3 é uma alternativa para redução de perdas e conservação da qualidade dos grãos, melhorando o rendimento em relação aos teores de proteínas e óleo brutos extraídos em até 95%; 3) a colheita antecipada com teores de água acima de 23% e a adoção de sistemas de secagem com temperatura do ar de 80 °C em ambientes com temperaturas abaixo de 23 °C conservaram a qualidade físico-química dos grãos; 4) os grãos submetidos à secagem e armazenamento em silos-secadores mantiveram a melhor qualidade ao final do processo. Embora tenha havido diferenças relacionadas à tecnologia de secagem e armazenamento em relação às alterações na qualidade dos grãos, percebeu-se que o modelo de Redes Neurais Artificiais demonstrou desempenho superior na predição da qualidade dos grãos. O modelo de Redes Neurais Artificiais foi unanimidade em todos os processos e tecnologias avaliados. Assim, recomenda-se realizar a secagem pós-colheita da soja e posterior armazenamento dos grãos em silos-secadores, monitorando variáveis ambientais e intergranulares. Recomenda-se que esta abordagem seja associada à utilização de modelos de Redes Neurais Artificiais para prever perdas com maior eficiência nas etapas de secagem e armazenamento.Universidade Federal de Santa MariaBrasilEngenharia AgrícolaUFSMPrograma de Pós-Graduação em Engenharia AgrícolaCentro de Ciências RuraisCoradi, Paulo Carterihttp://lattes.cnpq.br/5926614370728576Jaques, Lanes Beatriz AcostaZuffo, Alan MárioAguilera, Jorge GonzálezSantana, Dthenifer CordeiroLima, Roney Eloy2024-06-07T11:55:59Z2024-06-07T11:55:59Z2024-05-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/31991ark:/26339/00130000138q0porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-06-07T12:12:58Zoai:repositorio.ufsm.br:1/31991Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2024-06-07T12:12:58Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição
Drying and storage of soybeans: effects on physical and physical-chemical quality, modeling and prediction
title Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição
spellingShingle Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição
Lima, Roney Eloy
Monitoramento e qualidade de grãos de soja
Pré-processamento e armazenamento de soja
Processamento industrial da soja
Tecnologia pós-colheita
Monitoring and quality of soybeans
Pre-processing and storage of soybeans
Industrial soybean processing
Post-harvest technology
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição
title_full Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição
title_fullStr Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição
title_full_unstemmed Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição
title_sort Secagem e armazenagem de grãos de soja: efeitos sobre a qualidade física e físico-química, modelagem e predição
author Lima, Roney Eloy
author_facet Lima, Roney Eloy
author_role author
dc.contributor.none.fl_str_mv Coradi, Paulo Carteri
http://lattes.cnpq.br/5926614370728576
Jaques, Lanes Beatriz Acosta
Zuffo, Alan Mário
Aguilera, Jorge González
Santana, Dthenifer Cordeiro
dc.contributor.author.fl_str_mv Lima, Roney Eloy
dc.subject.por.fl_str_mv Monitoramento e qualidade de grãos de soja
Pré-processamento e armazenamento de soja
Processamento industrial da soja
Tecnologia pós-colheita
Monitoring and quality of soybeans
Pre-processing and storage of soybeans
Industrial soybean processing
Post-harvest technology
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
topic Monitoramento e qualidade de grãos de soja
Pré-processamento e armazenamento de soja
Processamento industrial da soja
Tecnologia pós-colheita
Monitoring and quality of soybeans
Pre-processing and storage of soybeans
Industrial soybean processing
Post-harvest technology
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description The quantitative and qualitative losses of post-harvest grains bring an imbalance in the grain production sector. To reduce losses, it is essential that the grain mass goes through cleaning and drying processes, to be stored with low levels of water and impurities. The heterogeneity of the batches of grains harvested at the beginning and end of the harvest can also alter the capacity and uniformity of the processes. Thus, the general objective of the study was to evaluate different technologies and management in the post-harvest of soybeans, based on the harvesting of grains with higher water contents, associated with drying and storage conditions and technologies and the effects on physical and physical chemistry of grains. Specifically, the objective was: 1) to evaluate different drying and storage technologies on quality losses in soybeans; 2) evaluate the effects of storage and storage operations on the quality of processed soybeans; 3) verify the use of mathematical models and multivariate analyzes to evaluate the relationship between the anticipation of the soybean harvest and the drying and storage conditions and the influences on the physical-chemical quality of the grains; 4) analyze the prediction of the quality of soybeans in different drying and storage technologies, on a real scale, using Machine Learning models. Among the results obtained, it was observed that: 1) the management of the grain mass in drying silos and continuous dryers reduced losses and guaranteed better grain quality; 2) grain quality losses due to drying management ranged from 0.23 to 3.26% in crude protein and from 0.15 to 3.05% in crude oil yield. Managing drying with a continuous dryer + silo-dryer-CDSD2, continuous dryer + silo-aerator-CDAS3 is an alternative for reducing losses and conserving grain quality, improving yield in relation to the protein and crude oil contents extracted in up to 95%; 3) early harvesting with water content above 23% and the adoption of drying systems with an air temperature of 80 °C in environments with temperatures below 23 °C preserved the physical-chemical quality of the grains; 4) the grains subjected to drying and storage in drying silos maintained the better quality at the end of the process. Although there were differences related to drying and storage technology in relation to changes in grain quality, it was noted that the Artificial Neural Networks model demonstrated superior performance in predicting grain quality. The Artificial Neural Networks model was unanimous in all processes and technologies evaluated. Therefore, it is recommended to carry out post-harvest drying of soybeans and subsequent storage of grains in drying silos, monitoring environmental and intergranular variables. It is recommended that this approach be associated with the use of Artificial Neural Network models to predict losses with greater efficiency in the drying and storage stages.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-07T11:55:59Z
2024-06-07T11:55:59Z
2024-05-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/31991
dc.identifier.dark.fl_str_mv ark:/26339/00130000138q0
url http://repositorio.ufsm.br/handle/1/31991
identifier_str_mv ark:/26339/00130000138q0
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153486780694528